Виды сварочного пламени

Сварочное пламя

СВОЙСТВА И РЕГУЛИРОВАНИЕ СВАРОЧНОГО ПЛАМЕНИ

Внешний вид, температура и влияние сварочного пламени на расплавленный металл зависят от состава горючей смеси, т. е. соотношения в ней кислорода и ацетилена.

При сгорании ацетилена в воздухе без добавления кислорода образуется пламя желтоватого цвета, имеющее форму длинного факела без светлого ядра. Такое пламя имеет низкую температуру и коптит, выделяя много сажи (несгоревшего углерода), поэтому непригодно для сварки.

Если в пламя прибавлять кислород, оно резко меняет свой цвет и форму, а температура его значительно повышается. Изменяя соотношение кислорода и ацетилена, можно получать три основных вида сварочного пламени (рис. 84, а, б, в): нормальное, называемое также восстановительным; окислительное (с избытком кислорода) и науглероживающее (с избытком ацетилена).

Для сварки большинства металлов применяют нормальное (восстановительное) пламя. Теоретически оно образуется, когда в горелку на один объем ацетилена подается один объем кислорода. Ацетилен тогда сгорает за счет кислорода смеси по реакции

Последующее сгорание происходит за счет кислорода окружающего воздуха по реакции

Окись углерода и водород, образующиеся в пламени при I фазе сгорания, раскисляют металл, восстанавливая имеющиеся в сварочной ванне окислы. При этом металл шва получается без пор, газовых пузырей и включений окислов.

Практически в смесь подают несколько больше кислорода, чем это нужно для получения восстановительного пламени по приведенной выше схеме сгорания. Нормальное восстановительное пламя получается при избытке кислорода в смеси до 30% против теоретического, т. е. при отношении ацетилена и кислорода от 1 : 1 до 1 : 1,3.

Схема образования нормального восстановительного ацетилено-кислородного пламени показана на рис. 85, а. Нормальное пламя имеет ядро, восстановительную зону и факел. У ядра четко очерченная форма, близкая к форме цилиндра с закругленным концом, и ярко светящаяся оболочка из раскаленных частиц углерода, сгорание которых происходит в наружном слое оболочки. Размеры ядра зависят от расхода горючей смеси и скорости ее истечения. Если увеличить давление кислорода в горелке, то скорость истечения смеси увеличится и ядро удлинится. С уменьшением скорости истечения смеси ядро укорачивается. На рис. 85, а внизу приведены длины и диаметры (мм) ядер ацетилено-кислородного пламени, получаемые в мундштуках разных номеров.

Восстановительная зона имеет темный цвет, отличающий ее от ядра и остальной части пламени. Длина этой зоны достигает 20 мм от конца ядра, в зависимости от номера мундштука. Она содержит окись углерода и водород. Восстановительная зона имеет наиболее высокую температуру в точке, отстоящей на расстоянии 2—6 мм от конца ядра. Этой частью пламени нагревают и расплавляют металл в процессе сварки.

Остальная часть пламени за восстановительной зоной называется факелом. Факел содержит углекислый газ, пары воды и азот, которые образуются при сгорании окиси углерода и водорода восстановительной зоны за счет кислорода окружающего воздуха, в состав которого входиг азот. Температура факела значительно ниже температуры восстановительной зоны.

Если увеличить подачу кислорода или уменьшить подачу ацетилена в горелку, то получается окислительное пламя. Оно образуется, когда в смеси на один объем ацетилена приходится более 1,3 объема кислорода. Окислительное пламя характеризуется укороченным, заостренным ядром с менее резкими очертаниями. Температура окислительного пламени выше температуры нормального восстановительного, однако такое пламя может окислять свариваемый металл.

При уменьшении подачи кислорода или увеличении подачи ацетилена получается науглероживающее пламя, которое иногда называют ацетиленистым. Оно образуется при подаче в горелку 0,95 и менее объема кислорода на один объем ацетилена. В ацетиленистом пламени размеры зоны сгорания увеличиваются, ядро теряет резкие очертания, становится расплывчатым, а на конце ядра появляется зеленый венчик, по которому судят об избытке ацетилена. Восстановительная зона светлее, почти сливается с ядром и пламя принимает желтоватую окраску. При большом избытке ацетилена пламя коптит вследствие недостатка кислорода, необходимого для полного сгорания ацетилена.

Избыточный ацетилен в ацетиленистом пламени разлагается на водород и углерод, переходит в расплавленный металл. Температура такого пламени ниже температуры восстановительного пламени. Уменьшая подачу ацетилена в горелку (до полного исчезновения зеленого венчика на конце ядра), ацетиленистое пламя превращают в нормальное.

При регулировании пламени следует обращать внимание на правильность установки давления кислорода и размер ядра пламени. С повышением давления кислорода скорость истечения смеси из мундштука возрастает и пламя становится «жестким», т. е. раздувает металл сварочной ванны и этим затрудняет сварку. При слишком большой скорости истечения смеси пламя может отрываться от мундштука. Если же слишком низкое давление кислорода, пламя становится короче и при приближении конца мундштука к металлу горелка начинает хлопать.

Сварочное пламя должно обладать достаточной тепловой мощностью, т. е. давать количество тепла, необходимое для расплавления свариваемого и присадочного металла и покрытия потерь тепла в окружающую среду. Тепловая мощность пламени определяется расходом ацетилена (дм 3 /ч) в горелке.

При сварке тепловая мощность пламени выбирается в зависимости от толщины, свариваемого металла и его физических свойств. Металл большой толщины и хорошо проводящий тепло требует более мощного сварочного пламени, чем тонкий, менее теплопроводный и более легкоплавкий металл. Изменяя тепловую мощность пламени, можно в широких пределах регулировать скорость нагрева и расплавления металла, что является одним из положительных качеств процесса газовой сварки. Схема и распределение температур для метан-кислородного и пропан-бутан-кислородного пламени показаны на рис, 85, б.

МЕТАЛЛУРГИЧЕСКИЕ ПРОЦЕССЫ ПРИ ГАЗОВОЙ СВАРКЕ

Металлургические процессы при газовой сварке характеризуются: малым объемом^ ванны расплавленного металла; высокой температурой и концентрацией тепла в месте сварки; большой скоростью расплавления и остывания металла; интенсивным перемешиванием металла ванны газовым потоком пламени и присадочной проволокой; химическим взаимодействием расплавленного металла с газами пламени.

При избытке в пламени кислорода происходят реакции окисления железа, марганца, кремния и углерода по уравнениям:

Образующаяся закись железа (FeO) может окислять марганец, кремний и углерод по реакциям:

[Мn] 4- [FeO] = (MnO) + Fe

[Si] + 2 [FeO] = (Si02) + 2Fe

Так как окислы МnО и Si02 переходят в шлак, то количество раскислителей (марганца и кремния) в металле шва уменьшается. Это приводит к появлению избытка кислорода в наплавленном металле и ухудшению его механических свойств.

При выходе окиси углерода из сварочной ванны происходит кипение и разбрызгивание металла.

Если пламя имеет восстановительный характер, в сварочной ванне будут протекать реакции восстановления, обратные приведенным выше, а именно:

1. Восстановление железа окисью углерода:

2. Восстановление железа водородом:

Водород способен хорошо растворяться в жидком железе. При быстром остывании сварочной ванны он может остаться в шве в виде мелких газовых пузырей. Однако газовая сварка обеспечивает более медленное охлаждение металла по сравнению с дуговой сваркой. Поэтому при газовой сварке углеродистой стали весь водород успевает выделиться из металла шва и последний получается плотным.

Большую опасность водород представляет для сварки меди и латуни, так как может вызвать «водородную болезнь» (растрескивание) меди и пористость шва при сварке латуни.

3. Восстановление железа из его закиси FeO осуществляется марганцем и кремнием по приведенным выше уравнениям 2 и 3.

Если в пламени имеется избыток углерода, то он может переходить в металл и науглероживать его по реакциям:

Свободный углерод образуется в пламени при разложении ацетилена по реакции С2Н2 = 2С + Н2.

При газовой сварке в металле шва происходят структурные изменения. Вследствие более медленного (по сравнению с дуговой сваркой) нагрева зона влияния при газовой сварке получается больше, чем при дуговой.

При газовой сварке углеродистых сталей малых толщин зона теплового влияния основного металла простирается на 8-15 мм, а средних толщин — на 20 — 25 мм в ту и другую сторону от шва. Характер изменения структуры металла в зоне теплового влияния определяется составом металла (сплава) и его состоянием перед сваркой. Для улучшения структуры и свойства металла шва и околошовной зоны часто применяют горячую проковку шва, общую или местную термообработку. Местную термообработку также производят путем нагрева металла шва и околошовной зоны пламенем сварочной горелки.

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

7.1. Сварочное пламя

При газовой сварке происходят разнообразные процессы: физические, связанные с нагревом и расплавлением металла, формированием шва, а также химические, обусловленные горением, взаимодействием флюса и присадочного материала с расплавленным металлом.

Читайте также  Как сделать сварочный полуавтомат своими руками?

Основным инструментом газосварщика является сварочное пламя. Оно образуется при сгорании горючего газа в кислороде. От соотношения объемов кислорода и горючего газа в их смеси зависят внешний вид, температура и характер влияния сварочного пламени на расплавленный металл.

Рассмотрим строение пламени (рис. 7.1). Сварочное пламя имеет три четко различимые области: ядро 7, восстановительную зону 2 и факел 3.

Рис. 7.1. Строение ацетиленового сварочного пламени и распределение температуры по длине факела: 1 — ядро; 2 — восстановительная зона; 3 — факел

Ядро пламени представляет собой ярко светящуюся зону, в наружном слое которой сгорают раскаленные частицы углерода, образующиеся при разложении ацетилена.

Восстановительная зона, более темная, состоит из оксида углерода и водорода, которые раскисляют расплавленный металл, отбирая кислород от его оксидов.

Факел — периферийная часть пламени — представляет собой зону полного сгорания углеводородов в кислороде окружающей среды.

В зависимости от соотношения объемов кислорода и ацетилена получают три основных вида сварочного пламени: нормальное, окислительное и науглероживающее (рис. 7.2).

Рис. 7.2. Виды сварочного пламени: а — нормальное; б — окислительное; в — науглероживающее; 1 — ядро; 2 — восстановительная зона; 3 — факел

Нормальное сварочное пламя образуется тогда, когда в горелке на один объем кислорода приходится один объем ацетилена. В нормальном пламени ярко выражены все три зоны.

Ядро имеет резко очерченную форму, близкую к цилиндру с ярко светящейся оболочкой. Температура ядра достигает 1000 °С.

В восстановительной зоне, содержащей продукты неполного сгорания ацетилена, проводят сварку. Температура этой зоны в точке, отстоящей на 3. 6 мм от ядра, составляет 3150°С. Факел имеет температуру 1200. 2500 °С.

Нормальным сварочным пламенем осуществляют сварку сталей всех марок, меди, бронзы и алюминия.

Окислительное сварочное пламя получают при избытке кислорода, когда в горелку подают на один объем ацетилена более 1,3 объема кислорода. Ядро такого пламени имеет укороченную, конусообразную форму. Оно приобретает менее резкие очертания и более бледную окраску, чем у нормального пламени. Протяженность восстановительной зоны уменьшается по сравнению с нормальным пламенем. Факел имеет синевато-фиолетовую окраску. Горение сопровождается шумом, уровень которого зависит от давления кислорода. Температура окислительного пламени выше, чем у нормального, однако при сварке таким пламенем из-за избытка кислорода образуются пористые и хрупкие швы.

Окислительное пламя применяют при сварке латуни и пайке твердыми припоями.

Науглероживающее сварочное пламя получают при избытке ацетилена, когда в горелке на один объем ацетилена приходится не более 0,95 объема кислорода. Ядро такого пламени теряет резкость очертаний, на его конце появляется зеленый венчик, по наличию которого судят об избытке ацетилена. Восстановительная зона существенно светлее, чем у нормального пламени, и почти сливается с ядром. Факел приобретает желтую окраску. При значительном избытке ацетилена пламя коптит. Температура науглероживающего пламени ниже, чем у нормального и окислительного.

Слегка науглероживающим пламенем сваривают чугун и осуществляют наплавку твердых сплавов.

Газосварщик регулирует и устанавливает вид сварочного пламени «на глаз».

При выполнении сварочных работ необходимо, чтобы сварочное пламя обладало тепловой мощностью, достаточной для расплавления свариваемого металла.

Мощность пламени при газовой сварке зависит от расхода ацетилена — объема газа, проходящего за один час через горелку. Мощность регулируют подбором наконечника горелки и изменением положения ацетиленового вентиля. Мощность пламени выбирают в соответствии с толщиной свариваемого металла и его теплофизическими свойствами.

Расход ацетилена, дм 3 /ч, необходимый для расплавления слоя свариваемого металла толщиной 1 мм, устанавливают на практике. Так, слой низкоуглеродистой стали толщиной 1 мм расплавляется при расходе ацетилена 100. 130 дм 3 /ч. Чтобы определить расход ацетилена при сварке конкретной детали, нужно умножить расход, соответствующий единичной толщине, на действительную толщину свариваемого металла, мм.

Пример. При сварке низкоуглеродистой стали толщиной 3 мм минимальный расход ацетилена, дм 3 /ч, составит 100х3 = 300, а максимальный — 130х3 = 390.

Виды сварочного пламени

Сварочное пламя образуется при сгорании горючего газа или паров горючей жидкости в кислороде. Пламя нагревает и расплавляет основной и присадочный металл в месте сварки. Наибольшее применение при газовой сварке нашло кислородно-ацетиленовое пламя, так как оно имеет высокую температуру (3150°С) и обеспечивает концентрированный нагрев. Однако в связи с дефицитностью ацетилена в настоящее время получили широкое распространение (особенно при резке металлов) газы-заменители ацетилена — пропан-бутан, метан, природный и городской газы.

От состава горючей смеси, т. е. от соотношения кислорода и горючего газа, зависят внешний вид, температура и влияние сварочного пламени на расплавленный металл. Изменяя состав горючей смеси, сварщик тем самым изменяет основные параметры сварочного пламени.

Для получения нормального пламени отношение кислорода к горючему газу должно быть для ацетилена — 1,1-1,2, природного газа — 1,5-1,6, пропана — 3,5.

Все горючие газы, содержащие углеводороды, образуют сварочное пламя, которое имеет три ярко различимые зоны:

  • ядро
  • восстановительная зона
  • факел

Водородное пламя ярко различимых зон не имеет, что затрудняет его регулировку по внешнему виду.

При зажигании газовой струи, вытекающей из сопла, пламя перемещается по направлению движения струи газовой смеси. Скорость истечения для каждого газа подбирается такой, чтобы пламя не проникало внутрь сопла горелки и не отрывалось от него. Газ в струе должен прогреваться до температуры воспламенения, ацетилен воспламеняется при температуре 450-500°С, а газы-заменители — 550-650°С. Поэтому ядро пламени при сгорании газов-заменителей длиннее, чем при сгорании ацетилена.

а — окислительное, б — нормальное, в — науглероживающее; 1 — ядро, 2 — восстановительная зона, 3 — факел

Рисунок 1 — Виды сварочного пламени

Процесс сгорания ацетилена в кислороде можно условно разделить на две стадии. Сначала под влиянием нагрева происходит распад ацетилена на элементы: С2Н2=2С+Н2. Затем происходит первая стадия сгорания ацетилена за счет кислорода смеси по реакции 2С+Н2+O2=2СО+Н2. Вторая стадия горения протекает за счет кислорода воздуха: 2СО+Н2+1,5O2=2СO22O. Процесс горения горючего газа в кислороде экзотермичен, т.е. идет с выделением теплоты.

Ядро имеет резко очерченную форму (близкую к форме цилиндра), плавно закругляющуюся в конце, с ярко светящейся оболочкой. Оболочка состоит из раскаленных частиц углерода, которые сгорают в наружном слое оболочки. Размеры ядра зависят от состава горючей смеси, ее расхода и скорости истечения. Диаметр канала мундштука горелки определяет диаметр ядра пламени, а скорость истечения газовой смеси — его длину.

Площадь поперечного сечения канала мундштука горелки прямо пропорциональна толщине свариваемого металла. Сварочное пламя не должно быть слишком «мягким» или «жестким». Мягкое пламя склонно к обратным ударам и хлопкам, жесткое — способно выдувать расплавленный металл из сварочной ванны. При увеличении давления кислорода скорость истечения горючей смеси увеличивается и ядро сварочного пламени удлиняется, при уменьшении скорости истечения ядро укорачивается. С увеличением номера мундштука размеры ядра увеличиваются. Температура ядра достигает 1000°С.

Восстановительная (средняя) зона располагается за ядром и по своему более темному цвету заметно отличается от него. Длина ее зависит от номера мундштука и достигает 20 мм. Зона состоит из продуктов неполного сгорания ацетилена — оксид углерода и водорода. Она называется восстановительной, так как оксид углерода и водорода раскисляют расплавленный металл, отнимая кислород от его оксидов. Если в процессе сварки расплавленный металл сварочной ванны находится в средней зоне, то сварочный шов получается без пор газовых и шлаковых включений. Этой зоной пламени выполняю сварку и поэтому ее называют рабочей. Восстановительная зона имеет наиболее высокую температуру (3140°С) в точке, отстоящей на 3-6 мм от конца ядра.

Зона полного сгорания (факел) располагается за восстановительной зоной. Она состоит из углекислого газа, паров воды и газа, которые образуются в пламени при сгорании оксида углерода и водорода восстановительной зоны за счет кислорода окружающего воздуха. Температура этой зоны значительно ниже, чем температура восстановительной, и колеблется от 1200 до 2520°С.

В зависимости от соотношения между кислородом и ацетиленом получают три основных вида сварочного пламени: нормальное, окислительное и науглероживающее. Нормальное пламя теоретически получают тогда, когда в горелку на один объем кислорода подают несколько больше от 1,1 до 1,3 объема ацетилена.

Читайте также  Какая сварка лучше дуговая или полуавтомат?

Нормальное пламя характеризуется отсутствием свободного кислорода и углерода в его восстановительной зоне. Кислорода в горелку подается немного больше из-за небольшой его загрязненности и расхода на сгорание водорода. В нормальном пламени ярко выражены все три зоны.

Окислительное пламя получается при избытке кислорода, при подаче в горелку на один объем ацетилена более 1,3 объема кислорода. При этом ядро приобретает конусообразную форму, значительно сокращается по длине, становится с менее резкими очертаниями и приобретает более бледную окраску. Сокращаются по длине также восстановительная зона и факел. Все пламя приобретает синевато-фиолетовую окраску. Пламя горит с шумом, уровень которого зависит от давления кислорода. Температура окислительного пламени выше нормального, однако сваривать стали таким пламенем нельзя из-за наличия в пламени избытка кислорода. Избыток кислорода приводит к окислению металла шва, шов получается пористым и хрупким. Окислительное пламя можно применять при газовой сварке латуни и пайке твердыми припоями.

Науглероживающее пламя получается при избытке ацетилена, когда в горелку на один объем ацетилена подается 0,95 и менее объема кислорода. Ядро такого пламени теряет резкость своего очертания, на конце его появляется зеленый венчик, по которому судят об избытке ацетилена. Восстановительная зона значительно светлее и почти сливается с ядром, а факел приобретает желтоватую окраску. При большом избытке ацетилена пламя начинает коптить, так как в нем ощущается недостаток кислорода, необходимого для полного сгорания ацетилена. Находящийся в пламени избыточный углерод легко поглощается расплавленным металлом и ухудшает качество металла шва. Температура науглероживающего пламени ниже, чем нормального и окислительного. Уменьшая подачу ацетилена в горелку до полного исчезновения зеленого венчика на конце ядра, ацетиленовое пламя превращается в нормальное. Слегка науглероживающее пламя применяют для сварки чугуна и при наплавке твердыми сплавами.

Характер сварочного пламени сварщик определяет на глаз по форме и окраске пламени. При регулировании пламени необходимо обращать внимание на правильность подбора расхода горючего газа и кислорода.

Вытекающая из мундштука горючая смесь оказывает механическое воздействие на расплавленный металл сварочной ванны и формирует валик шва. Жидкий металл отжимается к краям ванны. Характер формообразования металла зависит от угла наклона мундштука горелки к поверхности свариваемого металла.

а — вертикальном, б — наклонном, в — схема перемещения жидкого металла в ванне

Рисунок 2 — Схема механического воздействия пламени на жидкий металл сварочный ванны при различных положениях мундштука

Давление газов оказывает влияние на жидкий металл, перемещая его к задней стенке сварочной ванны, образуя чешуйки шва. При большом давлении кислорода горючая смесь вытекает из мундштука с большой скоростью, пламя становится «жестким» и выдувает расплавленный металл из сварочной ванны, затрудняя тем самым сварку.

Качество наплавленного металла и прочность сварного шва зависят от состава пламени, поэтому во время газовой сварки сварщик должен следить за его характером, регулировать его состав в течение всего процесса сварки. Характер пламени подбирают в зависимости от свариваемого металла и его свойства. Для газовой сварки сталей требуется нормальное пламя, для сварки чугуна, наплавки твердых сплавов — науглероживающее, для сварки латуни — окислительное пламя.

Характеристика и принцип работы газовой сварки. Особенности газов. Технологии и способы сварки

Газовая сварка – вид сварки плавлением, при котором источником нагрева служит теплота, выделяемая в процессе горения смеси горючих газов.

Метод подходит для соединения почти всех металлов, используемых в технике. Применяется в промышленности, сельском хозяйстве, строительстве, при выполнении ремонтных работ.

ГОСТы

Вся информация, относящаяся к газовой сварке и применяемым материалам, изложена в ГОСТах, которые необходимо выполнять.

  1. Термины и определения: ГОСТ Р ИСО 857-1-2009 – определение термина «газовая сварка.
  2. Сварочные материалы: ГОСТ 5457-75 – технические условия на ацетилен газообразный и растворенный технический, ГОСТ 3022-80 – технический водород.
  3. Газовая сварка и резка: ГОСТ 29090-91 – требования к материалам для газовой сварки.

Принцип работы

Сварка газом принадлежит к термическому классу. Энергоноситель – газ. Процесс работы заключается в нагревании кромок соединяемых деталей до их расплавления. Источник нагрева – высокотемпературное пламя сварочной горелки, образованное в результате сжигания смеси горючего газа с кислородом. Заполнение зазора между кромками выполняется металлом расплавленной присадочной проволоки или за счет расплавления материала кромок основного материала.

Схема газовой сварки

Оборудование

Сварочный пост (рабочее место сварщика) включает:

  • кислородные баллоны (хранение запасов кислорода);
  • редукторы кислородные, служащие для понижения давления кислорода, поступающего из баллона в горелку;
  • ацетиленовые баллоны и редукторы или ацетиленовые генераторы для получения газа из карбида кальция;
  • сварочные горелки с набором наконечников;
  • шланги (резиновые рукава) для подачи газа и кислорода в горелку;
  • принадлежности (очки со светофильтрами, набор ключей, молоток, щетки стальные для очистки материала и сварного шва);
  • стол сварочный или приспособление для сборки, закрепления элементов;
  • присадочную проволоку;
  • при необходимости – сварочные порошки, флюсы.

Примерная стоимость газосварочных аппаратов на Яндекс.маркет

Характеристика и особенности газов

Для нагрева металла необходима смесь горючих газов. Газовая сварка предполагает использование ацетилена или его заменителей в смеси с техническим чистым кислородом.

Ацетилен

Нагрев и расплавление металла при газовой сварке требует высокой температуры пламени, превышающей в 2 раза этот показатель металла, который сваривается.

Ацетилен по сравнению с другими газами образует наивысшую температуру пламени – 3050-3150° С, поэтому является основным при газовой сварке.

Ацетилен – соединение углерода с водородом. Бесцветный, с резким специфическим запахом горючий газ, взрывоопасный. Работа с газом требует осторожности и соблюдения мер техники безопасности.

Транспортировка баллонов

Заменители ацетилена

Сварка металлов, имеющих температуру плавления ниже стали, может осуществляться с использованием газов–заменителей. Например: пропан, метан, водород.

Пропан – технический газ без цвета, имеет резкий запах, тяжелее воздуха. Для сварки используют пропан-бутановую смесь, содержащую 5-30% бутана. Температура пропан-кислородного пламени достигает 2400 °С.

Метан-кислородная смесь почти без запаха. Пламя имеет температуру 2100-2200 °С, поэтому такой горючий газ применяют ограниченно.

Водород – легкий горючий газ без запаха, бесцветный. В определенных пропорциях с кислородом и воздухом может образовать взрывоопасную смесь. Поэтому обязательно соблюдение правил безопасности при работе с газом. Водород для сварки находится в стальных баллонах зеленого цвета. Имеет газообразное состояние. Пламя водородно-кислородное имеет синий оттенок. Нечеткие очертания его зон затрудняют регулировку.

Виды пламени и их использование

Состав горючей смеси влияет на внешний вид и температуру сварочного пламени. Оно имеет 3 зоны: ядро, восстановительную (среднюю), факел-окислительную. Ядро включает механическую смесь нагретого до высокой температуры кислорода и разложенного ацетилена.

В зависимости от пропорции ацетилена и кислорода различают 3 вида пламени:

  • окислительное;
  • восстановительное;
  • с повышенным содержанием горючего газа.

Окислительное

Пламя формируется при увеличении подачи в горелку кислорода или уменьшении количества ацетилена. На 1 объемную часть ацетилена должно приходиться 1.3 и более части кислорода. Характерные черты:

  1. Укороченное заостренное ядро бледной окраски с расплывчатыми очертаниями границ.
  2. Сокращение длины средней зоны и факела.
  3. Окраска пламени – синевато-фиолетовая.
  4. Горение происходит с шумом.
  5. Температура пламени превышает норму.

Этот тип пламени применяется для соединения низкоуглеродистой стали и сварки латуни.

Восстановительное (нормальное)

Соотношение ацетилена к кислороду может находиться в пределах от 1:1 до 1:1.3. В пламени происходит образование углерода и водорода, благодаря которым металл раскисляется и восстанавливается. В таких условиях формируется однородный металлический шов без газовых пузырей и пор.

Ядро пламени – светлое, восстановительная зона и факел имеют более темный оттенок. При увеличении давления кислорода ядро удлиняется. Факел имеет температуру намного ниже восстановительной зоны. Нормальное пламя используют для сваривания большинства видов металлов.

С повышенным содержимым горючего газа

Имеет название – науглероживающее или ацетиленистое пламя. Для него характерно увеличение подачи ацетилена или уменьшение кислорода. На 1 часть ацетилена берется 0.95 и менее части кислорода. Характерные признаки:

  • увеличение размеров зоны сгорания;
  • расплывчатость очертаний ядра, возникновение на его конце зеленого венчика;
  • посветление восстановительной зоны почти до ее соединения с ядром;
  • пожелтение пламени.

Результатом избытка ацетилена является его неполное сгорание, пламя коптит из-за недостатка кислорода. Излишек ацетилена разлагается на углерод и водород. В расплавленный металл переходит углерод. Результат – науглероживается металл шва.

Пламя с небольшим избытком горючего газа используют для сварки магниевых и алюминиевых сплавов, чугуна.

Читайте также  Электрошлаковая сварка сущность процесса и область применения

Характеристика методов газовой сварки

Существует 2 способа:

  • правый;
  • левый.

Правый

Это метод, при котором сварка выполняется слева направо. Направление:

  • сварочного пламени – сваренный участок шва;
  • присадочной проволоки – вслед за горелкой.

Мундштуком горелки совершаются небольшие поперечные колебания.

По сравнению с левым способом:

  • производительность сварки на 20-25% выше;
  • качество сварного шва лучше;
  • расход газов меньше на 15-20%.

Рассеивание теплоты пламени меньше по сравнению с левым методом, в связи с чем угол раскрытия шва составляет 60-70°, что способствует уменьшению количества наплавляемого материала, расхода проволоки и снижению коробления изделия.

Способ целесообразен при соединении элементов, имеющих большую теплопроводность и деталей, толщина которых превышает 5 мм.

Левый

Способ заключается в передвижении:

  • горелки справа налево;
  • присадочной проволоки – перед пламенем, которое направлено на несваренную зону шва.

Кромки основного металла перед началом сварочных работ подогревают, что способствует хорошему перемешиванию сварочной ванны.

Левый способ применяют для соединения элементов из легкоплавких и тонких (до 3 мм) металлов.

Схема способов сварки

Характеристика технологий

Различают разные техники наложения сварочных швов:

  • многослойную;
  • валиком;
  • ванночками;
  • окислительным пламенем.

Многослойная

Применение – выполнение ответственных соединений. Сварочные работы проводятся проходкой коротких участков. Условие – несовпадение стыков швов в отдельных слоях.

Перед наложением очередного слоя поверхность предыдущего очищается от шлаков и окалины с помощью проволочной щетки.

Преимущества способа по сравнению с однослойной сваркой:

  • меньшая зона нагрева;
  • обеспечение отжига нижерасположенных слоев;
  • проковка каждого слоя.

Недостаток: большой расход газов.

Валиком

Соединяемые элементы устанавливают вертикально с зазором в полтолщины листа. Пламенем расплавляют кромки с одновременным образованием круглого отверстия. Его нижний участок на всю толщину металла заплавляют присадочным материалом. Пламя переносят выше, оплавляют кромку отверстия вверху, а на его нижнюю часть накладывают следующий слой материала. Этапы повторяют до окончания формирования сварочного шва.

Если металл имеет толщину 6-12 мм, работы одновременно проводятся с двух сторон двумя сварщиками.

Шов имеет форму сквозного валика, который соединяет детали. Металл шва – плотный, не имеет дефектов.

Ванночками

Метод применяется при сварке низколегированной и низкоуглеродистой стали до 3 мм толщиной, когда требуется получение угловых соединений и встык. Используется присадочная проволока.

В момент образования на шве ванночки диаметром 4-5 мм в нее направляют конец проволоки, расплавляют ее небольшой участок, после чего перемещают в восстановительную зону пламени. Одновременно мундштуком совершают круговое движение для перехода в рядом расположенную на шве зону новой ванночки. Она должна перекрывать на 1/3 диаметра предыдущую ванночку.

Чтобы избежать окисления, конец проволоки удерживать в восстановительной зоне. Нельзя допускать погружения ядра в ванночку с целью недопущения науглероживания металла шва.

Окислительным пламенем

Метод используется для сварки низкоуглеродистой стали. Цель – повышение производительности сварочного процесса на 10-15%.

Состав пламени β = 1.4. Избыток кислорода при сварке сталей способствует окислению металла шва, поэтому он получается хрупким и имеет поры. Поэтому при работе с целью раскисления окислов железа в сварочной ванне используют присадочные проволоки с повышенным составом кремния и марганца. Например: Св 08Г, Св 08Г2С, Св-12ГС.

Преимущества и недостатки

К положительным качествам газовой сварки относятся:

  • простота;
  • недорогое оборудование;
  • возможность регулирования скорости нагрева и охлаждения свариваемого металла;
  • прочные и плотные сварные швы.
  • снижение производительности процесса при увеличении толщины свариваемого материала;
  • обширная зона нагрева;
  • высокая стоимость горючего газа по сравнению с электроэнергией;
  • сложности механизации и автоматизации процесса.

КЛАССИФИКАЦИЯ СВАРОЧНОГО ПЛАМЕНИ И ЕГО СВОЙСТВА

Цель работы: сформировать у студентов представление о сварочном пламени, его составе и видах; сформировать у студентов систему знаний об основах сварки плавлением.

Оснащение: карточки задания ; макеты газового оборудования.

Ход работы.

I. Теоретическая часть.

Газовое (или сварочное) пламя – основной источник теплоты при сварке и других процессах газопламенной обработки. Сварочное пламяобразуется при сгорании горючего газа или паров горючей жидкости в кислороде. Пламя нагревает и расплавляет основной и присадочный металл в месте сварки.

Виды сварочного пламени

От состава горючей смеси, т.е. от соотношения кислорода и горючего газа, зависит внешний вид, температура и влияние сварочного пламени на расплавленный металл. Изменяя состав горючей смеси, сварщик тем самым изменяет основные параметры сварочного пламени. В зависимости от соотношения между кислородом и ацетиленом получают три основных вида сварочного пламени: нормальное, окислительное и науглероживающее.

Нормальное пламя

ядро восстан. зона факел

Нормальное пламя теоретически получают тогда, когда в горелку на один объем кислорода поступает один объем ацетилена. Практически кислорода в горелку подают несколько больше – от 1,1 до 1,3 от объема ацетилена. Нормальное пламя характеризуется отсутствием свободного кислорода и углерода в его восстановительной зоне. Кислорода в горелку подается немного больше из-за небольшой его загрязненности и расхода на сгорание водорода. В нормальном пламени ярко выражены все три зоны. Нормальное пламяиспользуют для сварки малоуглеродистых, низколегированных и высоколегированных сталей, а также меди, магниевых сплавов, алюминия, цинка, свинца.

Ядро пламени имеет резко очерченную форму цилиндра или конуса с закругленным концом и ярко светящейся оболочкой, состоящей из раскаленных частиц углерода. Длина ядра зависит от скорости истечения горючей смеси. Если увеличить давление кислорода в горелке, скорость истечения смеси увеличится и ядро удлинится. С уменьшением скорости истечения смеси длина ядра уменьшается. С увеличение номера мундштука размеры ядра увеличиваются. Температура ядра достигает 1000 °С. Восстановительная зона имеет темный цвет, заметно отличающий ее от ядра и остальной части пламени. Длина ее зависит от номера мундштука и достигает 20 мм. Если в процессе сварки расплавленный металл сварочной ванны находится в средней зоне, то сварочный шов получается без пор, газовых и шлаковых включений. Этой зоной пламени и производится сварка. Восстановительная зона имеет наиболее высокую температуру (3150 °С) в точке, отстоящей на 3 – 6 мм от конца ядра. Факел состоит из углекислого газа, паров воды и азота, которые образуются в пламени при сгорании окиси углерода и водорода восстановительной зоны за счет кислорода окружающего воздуха. Температура этой зоны значительно ниже, чем температура восстановительной, и колеблется от 1200 до 2500 °С.

Окислительное пламя

Если увеличить подачу кислорода в горелку, то получится окислительное пламя. Оно образуется в том случае, если в смеси на один объем ацетилена приходится более 1,3 объема кислорода. Окислительное пламя характеризуется укороченным, заостренным ядром с менее резкими очертаниями и более бледной окраской. Пламя горит с шумом – чем больше кислорода в смеси, тем больше шума. Температура окислительного пламени гораздо больше, чем у нормального пламени, но сваривать сталь им нельзя, так как такое пламя сильно окисляет металл сварочной ванны и способствует получению пористости и хрупкости сварного шва. Окислительное пламя можно применять при сварке латуни и пайке твердым припоем.

Науглероживающее пламя

Науглероживающее пламя получается при избытке ацетилена, когда в горелку на один объем ацетилена подается 0,95 и менее объема кислорода. Размеры зоны сгорания у науглероживающего пламени увеличиваются, ядро становится расплывчатым, а у его конца появляется зеленый венчик, это свидетельствует об избытке ацетилена. Граница между восстановительной зоной и факелом исчезает, факел принимает желтоватую окраску и сильно коптит из-за недостаточного количества кислорода. Находящийся в пламени избыточный углерод легко поглощается расплавленным металлом и ухудшает качество металла шва. Температура науглероживающего пламени ниже, чем у нормального и окислительного. Науглероживающее пламя применяют для сварки высокоуглеродистых сталей, чугуна, цветных металлов и при наплавке твердых сплавов.

Дата добавления: 2019-01-14 ; просмотров: 688 ; Мы поможем в написании вашей работы!

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: