Технология сварки высокоуглеродистых сталей

Сварка углеродистых сталей – как правильно выполнить сварочный процесс?

Сварка углеродистых сталей имеет ряд особенностей и определенных трудностей, которые обусловлены именно тем, что углерод в них является главным легирующим элементом.

1 Главные особенности сварки углеродистой стали

К углеродистым относят стали с содержанием углерода от 0,1 до 2,07 %. Сплавы, в которых данный элемент содержится в количестве 0,6–2,07 %, называют высокоуглеродистыми, 0,25–0,6 % – среднеуглеродистыми, менее 0,25 % – низкоуглеродистыми. Технология сварки для каждой из этих групп легированных сталей своя. При этом есть и общие рекомендации, коих следует придерживаться, осуществляя сварку изделий из сплавов, включающих в свой состав на правах главного легирующего элемента углерод. О них мы и поговорим.

Стыковые швы, соединяемые полуавтоматами при помощи порошковых проволок и в защитной атмосфере, электродами покрытого вида (вручную), а также с применением газосварки, в большинстве случаев сваривают на весу. Если же используется автоматическое оборудование, необходимо применять такие методики, которые, во-первых, гарантируют достаточный провар корня шва, а во-вторых, исключают вероятность образования прожогов.

Для разных методов сварки имеются собственные стандарты, которые описывают требования к параметрам швов и процессу подготовки кромок соединяемых деталей. Сварные конструкции с целью надежной фиксации между собой компонентов, входящих в них, рекомендовано собирать, используя специальные прихватки либо сборочные приспособления.

Прихватки, как правило, применяют при полуавтоматическом процессе в углекислом газе либо при использовании покрытых электродов для легированных углеродистых сталей. Толщина металла определяет длину указанных прихваток, а площадь их сечения обычно составляет порядка 2,5–3 сантиметров (до трети площади сечения получающегося сварного шва). Желательно производить их накладку с той стороны, которая является обратной по отношению к однопроходному главному шву. В тех случаях, когда речь идет о многопроходных швах, прихватки накладывают с обратной стороны по отношению к самому первому слою.

Перед началом сварки прихватки в обязательном порядке следует скрупулезно зачистить и провести их визуальный осмотр. Если при таком осмотре обнаруживают трещины, их обязательно удаляют. Еще один момент – необходимо добиваться полного переплавления используемых прихваток. В противном случае из-за повышенной скорости отвода тепла на них могут возникать трещины, которые ухудшают свариваемость и делают весь процесс сварки некачественным.

Электродуговая сварка углеродистых сплавов демонстрирует высокую эффективность при наложении нескольких швов и при сваривании изделий в двух сторон. Многослойная сварка рекомендована для деталей, имеющих большую толщину, а также для конструкций, работающих в ответственных условиях. Если после процесса в швах обнаруживаются подрезы, трещины, поры, непровары и прочие дефекты, следует:

  • механически удалить металл в «опасном» месте;
  • выполнить зачистку зоны дефекта;
  • произвести подваривание зачищенной области.

При использовании электрошлакового способа сварки изделия нужно монтировать с некоторым зазором, который к концу должен иметь небольшое расширение. Фиксация взаимного расположения элементов свариваемой конструкции производится при помощи скоб (дистанция между ними – от 50 до 100 сантиметров). Кроме того, при электрошлаковом процессе и при дуговой автоматической сварке на шве (в начале и в конце) монтируют планки, которые облегчают процедуру и обеспечивают заданные параметры шва.

2 Как выполняется сварка низкоуглеродистых сталей?

Свариваемость таких сталей среди профессионалов считается сравнительно простой, если применять любые способы и типы соединения деталей методом плавления. Конкретная технология сварки при этом назначается с учетом того, что в сварном соединении по окончании процедуры не должно быть никаких значительных дефектов.

Стоит заметить, что при сварке легированных сплавов с низким содержанием углерода основной металл имеет ряд отличий от металла шва:

  • в металле соединения увеличивается доля кремния и марганца, а вот углерода становится меньше;
  • наблюдается изменение механических характеристик околошовного металла (электрическая и ручная дуговая сварка обычно приводят к несущественному упрочнению материала в перегретой области);
  • есть вероятность того, что металл около шва снизит показатель своей ударной вязкости (такое наблюдается при сварке нестареющих легированных сплавов);
  • при многослойном сварочном процессе металл шва способен быстро охрупчиваться.

Все эти отличия не оказывают значительного влияния на качество шва, полученного сваркой плавлением.

Также никаких трудностей не возникает и при газовой сварке сталей, легированных небольшим количеством углерода (до 0,25 %). Причем, как правило, флюс при газовой операции не применяется. При правом методе такой сварки на один миллиметр толщины свариваемого изделия расходуется от 120 до 150 кубических дециметров ацетилена в час, при левом – от 100 до 130. Допускается использовать и более мощное пламя (расход – до 200 кубических дециметров). Но тогда необходимо брать большую по сечению присадочную проволоку.

Отличная свариваемость изделий из низкоуглеродистых легированных сталей отмечается и при использовании покрытых электродов. Оптимальные результаты сварки обеспечивают стержни с рутиловым (Э46Т) и кальциево-фтористорутиловым (Э42А) слоем. Популярностью у профессиональных сварщиков пользуются и сварочные стержни с покрытием, в которое добавлен железный порошок.

Электрошлаковая сварка изделий из низкоуглеродистых сталей ведется с помощью флюсов АН-22, ФЦ-1, АН-8, ФЦ-7, АН-8М. Проволоку при этом подбирают с учетом состава сплава. Так, например, Ст3 сваривают при помощи проволоки Св-08Гс, Св-10Г2, СВ-08ГА, а кипящие марки стали – Св-08А.

3 Тонкости сварки среднеуглеродистых сталей

Свариваемость данных сплавов не так хороша, как низкоуглеродистых легированных сталей, так как в них углерод содержится в больших объемах. Отмечаются следующие трудности при сварке среднеуглеродистых материалов: отсутствие равной прочности основного металла и металла шва; высокий риск формирования больших трещин и закалочных непластичных структур в зоне около сварного шва; малый показатель стойкости против появления кристаллизационных дефектов.

Впрочем, все эти проблемы при сварке среднеуглеродистых сплавов разрешить не так уж и сложно. Можно применять сварочные стержни с повышенным коэффициентом наплавки, наплавочную проволоку и особые электроды для углеродистой стали с малым содержанием в них углерода. В этом случае ручная дуговая сварка проходит без затруднений. Также рекомендуется повышать свариваемость деталей посредством:

  • реализации раздельного (в несколько ванн) двухдугового сварочного процесса;
  • изменения структуры металла шва (применение особых режимов разделки кромок, обеспечивающих наименьшую степень проплавления основного металла);
  • подогрева (как сопутствующего, так и предварительного) соединяемых заготовок.

Электродуговая сварка конструкций из среднеуглеродистых легированных сталей в большинстве случаев осуществляется стержнями УОНИ (13/45 и 13/55). Они имеют особое покрытие (фтористо-кальциевое), гарантирующее увеличение стойкости металла шва к появлению трещин (кристаллизационных) и отличную прочность получаемого сварного шва.

Технология дуговой сварки среднеуглеродистых изделий предусматривает такие особенности:

  • из-за риска формирования трещин желательно производить заваривание кратеров, а также выполнять продольные перемещения электрода вместо поперечных;
  • следует накладывать неширокие валики, используя короткую электродугу;
  • рекомендуется выполнять термическую обработку шва после сварки (особенно, когда он по техническому заданию должен иметь повышенную пластичность).

Газовое соединение легированных среднеуглеродистых сплавов осуществляется незначительно науглероживающим или же стандартным пламенем. При этом используется исключительно левый способ, а мощность пламени варьируется в пределах от 75 до 100 кубических дециметров в час. После сварки можно выполнить термообработку либо проковку металла. Эти операции существенно улучшат свойства стали. Если свариваются детали, чья толщина превышает три миллиметра, технология газовой сварки предусматривает необходимость их подогрева примерно до 650 (местный нагрев) или до 350 (общий нагрев) градусов.

Отдельно скажем о том, что возможна сварка среднеуглеродистых конструкций и в условиях пониженной температуры (-30 и менее градусов). В подобных ситуациях применяется особая сварочная технология, которая требует обязательной термообработки изделий после сварки и постоянного подогрева металла (сначала его нагревают предварительно до указанных выше температур, а затем греют в течение всей операции). При соблюдении изложенных требований качество шва будет безупречным.

Читайте также  Оборудование для сварки алюминия аргоном

4 Возможна ли сварка высокоуглеродистых сплавов?

Высокое содержание углерода в таких сталях делает их непригодными для производства сварных конструкций. Но нередко при проведении ремонтных мероприятий возникает потребность в сварке высокоуглеродистых сплавов. В этих случаях их сваривают методами, которые используются для сталей со средним содержанием углерода. Единственное условие – сваривание высокоуглеродистых изделий не проводится на сквозняках и тогда, когда температура окружающего воздуха составляет менее пяти градусов по Цельсию.

Сварка сталей с большим (до 0,75 процентов) содержанием углерода по газовой методике производится на науглероженном (незначительно) или на нормальном пламени, мощностью не более 90 кубических метров ацетилена в час. При этом металл подогревается до 300 градусов (обязательное условие для получения качественного соединения). Сварка высокоуглеродистых сплавов выполняется левым способом. Это дает возможность снизить время нахождения металла в состоянии расплава и время его перегрева.

Виды углеродистых сталей и их сварка

Самый потребляемый в мире металл – сталь, фактически сталь – это не металл, а сплав железа с углеродом. На данный момент общее количество производимой стали в мире превышает полтора миллиарда тонн в год. Стали подразделяются на углеродистые и легированные, легированные отличаются тем, что в процессе производства в сталь добавляют различные элементы (например никель, для увеличения сопротивления коррозии, марганец для увеличения прочностных характеристик и так далее), придающие ей особые свойства. Углеродистые стали используются чаще всего для сваривания, существуют низкоуглеродистые стали, содержащие менее 0,3 % углерода, они хорошо поддаются любой сварке, среднеуглеродистые с содержанием от 0,3 до 0,6 % поддаются сварочному процессу хуже, зато прочнее, но менее пластичнее, высокоуглеродистые стали самые прочные, но имеют небольшое относительное удлинение, поддаются сварочному процессу хуже всех. Отличаются они по содержанию углерода, а, следовательно, по химическим и физическим свойствам.

Малоуглеродистая сталь и ее свойства

Низкоуглеродистая сталь относится к большой группе конструкционных. Содержание углерода в ней не больше 0,3 %, из-за такого невысокого процентного содержания она имеет следующие свойства:

  • Высокая пластичность и упругость;
  • Хорошо поддается сварочному процессу;
  • Высокая ударная вязкость.

Данная марка нашла широкое применение в строительстве благодаря тому, что она очень легко сваривается, так как в ее структуре очень мало углерода, который плохо влияет на сварочный процесс, так как в металлическом шве могут образовываться хрупкие структуры и пористости, которые затем приводят к поломке. Также из-за высокой мягкости из нее изготавливаются детали методом холодной штамповки.

Сварка углеродистых сталей

Сваривать возможно абсолютно все марки стали. Однако для сварки каждого вида металла существует своя технология. Технология сварки углеродистых сталей должна соответствовать требованиям, которые включают в себя:

  • Равномерное распределение прочности шва по всей длине;
  • Отсутствие сварных дефектов, швы не должны иметь различных трещин, пор, нарезов и так далее;
  • Размеры и геометрическая форма шва должны быть выполнены в соответствие с нормами, прописанными в соответствующем ГОСТе 5264-80;
  • Вибрационная устойчивость свариваемой конструкции;
  • Использование электродов с пониженным содержанием водорода и углерода, которые могут оказать негативное влияние на качество шва;
  • Конструкция должна быть прочной и жесткой.

Таким образом, технология должна быть максимально эффективной, то есть давать наивысшую производительность процесса при обеспечении высокой прочности и надежности.

Механические свойства металла шва и сварного соединения полностью зависят от микроструктуры, которая представляет собой химический состав, а также определяется режимом сварки и термообработкой, которая осуществляется как до, так и после сваривания.

Низкоуглеродсиая сталь: технология сварки

Как уже было сказано выше, низкоуглеродистые стали поддаются сварочному процессу лучше всего. Они могут свариваться с помощью газовой сварки в ацетиленкислородном пламени без дополнительных флюсов. В качестве присадки используются металлические проволоки. Негативно повлиять на сварочный процесс может водород, который способен образовывать поры. Для предотвращения данной проблему рекомендуют проводить сварочный процесс с присадочным металлом, содержащим небольшое количество углерода.

После осуществления процесса сваривания конструкцию необходимо термически обработать, чтобы улучшить механические свойства – пластичность и прочность будут одинаковы. Термическую обработку сварных конструкций проводят операцией нормализации, которая заключается в нагреве изделия до определенной температуры, примерно 400 градусов, выдержке и дальнейшему охлаждению на воздухе. В результате структура уравнивается, углерод в виде цементита в металле диффундирует внутрь зерен, благодаря чему структура становится равномерной.

Газовую сварку проводят в присутствии аргона, который создает нейтральную среду. Конструкции, которые выполняются сваркой в среде аргона имеют более ответственное назначение.

Сварка низкоуглеродистых сталей может проводиться вручную, дуговая сварка такого материала требует правильного выбора электрода. При выборе электрода необходимо учитывать следующие факторы, благодаря которым обеспечиться равномерная структура шва без дефектов. Перед тем как осуществлять процесс сварки необходимо прокалить электроды, чтобы подготовить их к дальнейшей работе, убрать водород. Сварка низкоуглеродистых железных сплавов должна быть точной т быстрой, перед началом процесса нужно подготовить металлические детали.

Сварка среднеуглеродистых

Процедура сварки стальных деталей со средним содержанием углерода, от 0,3 % до 0,55 % сложнее по сравнению с низкоуглеродистым, так как большее количество углерода может негативно повлиять на сварочный шов. Углерод уменьшает предел хладноломкости – то есть разрушении при низких температурах, увеличивает прочность и твердость, однако снижает пластичность шва.

Для сварки применяются электроды с пониженным содержанием углерода, которые обеспечивают прочное соединение.

Сварка высокоуглеродистых сталей

Стали, имеющие высокий процент содержания углерода, от 0,6 % до 0,85 %, очень плохо поддаются сварочному процессу. Газовая сварка применяться в данном случае не может, так как в процессе углерод выгорает в больших количествах и образуются закалочные структуры, которые ухудшают качество шва. Лучше всего в данном случае применять дуговую сварку.

Требования

Во время сварки углеродистых сталей для достижения максимальных параметров необходимо соблюдение следующих требований:

  • Сварные электроды и проволока должны иметь низкий процент углерода, чтобы избежать появление ненужных дефектов;
  • Необходимо следить, чтобы углерод из металла под действием высокой температуры не переходил в сварной шов, для этого применяется проволока для сварки сталей со средним содержанием углерода и выше, например Forte E71T-1, Барс-71. Данные типы отлично подойдут для сварки сталей с содержанием углерода выше 0,3 %;
  • При проведении сварочного процесса следует добавлять флюсы, которые способствуют образованию тугоплавких образований;
  • Снижать химическую неоднородность шва путем последующей термической обработки;
  • Снижать содержание водорода путем прокалки электродов, использованием электродов с низким содержанием водорода и прочее.

Особенности

Также следует отметить следующие особенности проведения сварки углеродистых сталей:

  • Перед проведением данной операции нужно тщательно очищать свариваемый материал от ржавчины, механических неровностей, грязи, окалины. Эти загрязнения способствуют образованию трещин в сварочном шве;
  • Охлаждать сварочные конструкции из углеродистых сталей нужно медленно, на воздухе, чтобы структура нормализовалась;
  • При проведении сварного процесса для ответственных деталей нужен предварительный подогрев, примерно до 400 градусов, с помощью подогрева обеспечится требуемая прочность шва, также в данном случае сварку можно осуществлять в несколько подходов.

Таким образом, процесс сваривания углеродистых сталей зависит, главным образом, от содержания в них углерода. Поэтому необходимо учитывать, какое содержание и выбирать правильную технологическую схему, чтобы получить высококачественное прочное изделие, которое сможет прослужить долгий срок.

Глава XIII. Сварка углеродистых и легированных сталей

§ 63. Технология сварки углеродистых сталей

В зависимости от химического состава сталь бывает углеродистая и легированная. Углеродистая сталь делится на низкоуглеродистую (содержание углерода до 0,25%), среднеуглеродистую (содержание углерода от 0,25 до 0,6%) и высокоуглеродистую (содержание углерода от 0,6 до 2,0%). Сталь, в составе которой кроме углерода имеются легирующие компоненты (хром, никель, вольфрам, ванадий и т. д.), называется легированной. Легированные стали бывают: низколегированные (суммарное содержание легирующих компонентов, кроме углерода, менее 2,5%); среднелегированные (суммарное содержание легирующих компонентов, кроме углерода, от 2,5 до 10%), высоколегированные (суммарное содержание легирующих компонентов, кроме углерода, более 10%).

Читайте также  Как сделать сварочный стол своими руками?

По микроструктуре различают стали перлитного, мартенситного, аустеннтного, ферритного и карбидного классов. По способу производства сталь может быть:

обыкновенного качества (содержание углерода до 0,6%), кипящая, полуспокойная и спокойная. Кипящую сталь получают при неполном раскислении металла кремнием, она содержит до 0,05% кремния. Спокойная сталь имеет однородное плотное строение и содержит не менее 0,12% кремния. Полуспокойная сталь занимает промежуточное положение между кипящей и спокойной сталями и содержит 0,05-0,12% кремния;

качественной — углеродистой или легированной, в которых содержание серы и фосфора не должно превышать по 0,04 каждого элемента;

высококачественной — углеродистой или легированной, в которых содержание серы и фосфора не должно превышать соответственно 0,030 и 0,035%. Такая сталь также имеет повышенную чистоту по неметаллическим включениям и обозначается буквой А, помещаемой после обозначения марки.

По назначению стали бывают строительные, машиностроительные (конструкционные), инструментальные и стали с особыми физическими свойствами.

Сварки низкоуглеродистых сталей. Такие стали имеют хорошую свариваемость. При выборе типа и марки электрода для сварки низкоуглеродистых сталей руководствуются следующими требованиями:

обеспечение равно прочности сварного соединения с основным металлом;

получение сварных швов без дефектов;

обеспечение требуемого химического состава металла шва;

получение стойкости сварных соединений в условиях вибрационных и ударных нагрузок, а также при повышенных или пониженных температурах.


30. Технологические характеристики электродов для сварки низкоуглеродистых сталей


31. Технологические характеристики электродов для сварки среднеуглеродистых сталей

Для сварки низкоуглеродистых сталей применяют электроды марок ОММ-5, СМ-5, ЦМ-7, КПЗ-Э2Р, ОМА-2, УОНИ-13/45, СМ-11 и др. (табл. 30).

Сварка среднеуглеродистых сталей. Такие стали имеют повышенное содержание углерода, который является причиной образования кристаллизационных трещин при сварке, а также малопластичных закалочных структур и трещин в околошовной зоне. Поэтому для повышения стойкости металла шва против образования кристаллизационных трещин следует понизить количество углерода в металле шва. Это достигается применением электродов с пониженным содержанием углерода, а также уменьшением доли участия основного металла в металле шва.

Чтобы снизить вероятность появления закалочных структур, необходимо применять предварительный и сопутствующий подогрев изделия. Надежным способом достижения равнопрочности сварного соединения при низком процентном содержании углерода является дополнительное легирование металла шва марганцем и кремнием.

Среднеуглеродистые стали свариваются электродами УОНИ-13/45, УП-1/45, УП-2/45, ОЗС-2, УОНИ-13/55, К-5А, У ОНИ-13/65 и др. (табл. 31).

Вопросы для самопроверки

  1. Как классифицируются стали?
  2. Каковы особенности сварки низкоуглеродистых сталей?
  3. Как избежать возникновения кристаллизационных трещин при сварке среднеуглеродистых сталей?

Глава 6 ТЕХНОЛОГИЯ СВАРКИ СРЕДНЕУГЛЕРОДИСТЫХ И ВЫСОКОУГЛЕРОДИСТЫХ СТАЛЕЙ

Среднеуглеродистые стали используются для изготовления сварных конс-трукций значительно реже, чем низкоуглеродистые. Основная область их приме-нения — детали машин и механизмов в машиностроении, судостроении и других областях, например гидроцилиндры,зубчатые колеса и др. Необходимость их сварки воз­никает при изготовлении и ремонте. Наиболее распространены следу-ющие марки: стали обычного качества — Ст4, Ст5; качественные — сталь 30; сталь 35; сталь 45. Содержание углерода колеблетсяв пределах 0,26-0,45 %, временное сопротивление на разрыв σв= 420-600 МПа. Химический состав некоторых сталей приведен в табл.6.12.

Таблица 6. 12. Химический состав срсднсуглеродистых сталей

Марка стали Ст4СП Ст5СП Сталь 30 Сталь 35 Сталь 40
Содержа-ние эле-мента, % углерод 0,18-0,27 0,28-0,37 0,27-0,35 0,32-0,40 0,37-0,45
марганец 0,4-0,7 0,5-0,8 0,5-0,8 0,5-0,8 0,5-0,8
кремний 0,12-0,3 0,15-0,35 0,17-0,37 0,17-0,37 0,17-0,37

Высокоуглеродистые стали для изготовления сварных конструкций не при-меняются. Необходимость их сварки возникает обычно при ремонте.Повышенное содержание углерода значительно затрудняет сварку этой группы сталей из-за низкой стойкости шва к образованию кристаллизационных трещин, образования при сварке малопластичных закалочных структур, сложности обеспечения равно-прочностиметалла шва с основным металлом и др. На рис. 6.3 показано соотношение структурных составляющих шва для стали 35 в зависимости от скорости его охлаждения.

Рис. 6.3. Диаграмма соотношения структурных составляющих сварного шва стали 35 в зависимости от скорости охлаждения

Из диаграммы видно, что область пластичной ферритной структуры по сравнению с низкоуглеродистыми сталями резко уменьшена. Основу металла шва составляют перлитная, бейнитная и мартенситная составляющие. Причем двадцатипроцентное содержание мартенсита, считающееся достаточным для образования трещин, достигается при скоростях охлаждения ωохл

7-10°/ с, что в 10-15 раз ниже, чем для низкоуглеродистых сталей. В связи с этим при сварке среднеуглеродистых сталей получить качественное соедине­ние без применения специальных технологических приемов очень сложно.

Основными технологическими мероприятиями, применяющи­мися при сварке среднеуглеродистых сталей, являются следующие.

1. Предварительный подогрев свариваемых кромок. Подогрев кромок, выполненный до сварки, позволяет уменьшить отвод тепла в изделие после сварки и таким образом снизить скорость охлаж­дения шва. Температура предва­рительного подогрева выбирает­ся в зависимости от содержания в стали углерода. График, показы­вающий соотношение между тем­пературой предварительного по­догрева и содержанием углерода, приведен на рис. 6.4.

Рис. 6.4. Соотношение между темпе­ратурой предварительного подогрева и содержанием углерода, при кото­ром возможно образование трещин в шве

Предварительный подогрев является достаточно эффективным спосо-бом регулирования термического цикла сварки и как правило, позволяет избежать трещин. Однако он не удобен в исполнении, увеличивает трудоемкость и энергоемкость работ, ухудшает условия работы сварщика, поэтому при наличии возмож­ности избежать образования трещин другими способами его стараютсяне применять.

2. Уменьшение содержания углерода в сварном шве. Обычно это дос-тигается соответствующей подготовкой кромок перед свар­кой. При сварке шов формируется за счет сварочной проволоки и основного металла. Из рис. 6.5 следует, что при разделке кромок для наплавленного металла γн в металле шва возрастает.

Рис. 6.5. Схема формирования шва без разделки и с разделкой кромок

Известно, что проволока илистержень электрода содержит углерода около С=0,08 %(Св08А; СвО8Г2С и т.д.). Сталь же содержит углерода С= 0,26-0,45 %. В связи с этим при увеличении γн содержание углеродав шве уменьшается, поэто-му при сварке среднеуглеродистых сталей рекомендуется делать разделку кро-мок в любом случае, дажепри небольшой толщине свариваемого металла.

3.Рациональный выбор сварочных материалов. Сварочные материалыдолжны обеспечивать максимальную пластичность металла шва.Это достигается применением электродов с основным покрытием. Обычно для сварки среднеуглеродистых сталей рекомендуются электроды УОНИ13/45, УОНИ13/55. Тип электрода или марка проволоки должны содержать в обозначении букву А, что свидетельствует о пониженном содержании серы и фосфора, на­пример тип электрода Э46А; проволока СвО8А, СвО8ГА. По этой причине способы сварки покрытыми электродами и под флюсом болеепредпочтительны, чем сварка в СО2, так как обеспечивают большую пластичность шва.

4.Рациональный выбор режимов сварки. Сварку среднеуглеродистыхсталей рекомендуется выполнять электродами или проволокой меньшего ди-аметра и при меньшей силе тока по сравнению со сваркой низкоуглеродистых сталей. Во-первых, это уменьшает глубину проплавления и снижает пе-ремешивание основного и наплав­ленного металла, что в свою очередь уменьшает вероятность попа­дания углерода из основного металла в металл шва. Во-вторых, при малых токах идет более интенсивное восстановление марганца и кремния из окислов, что обеспечивает их более высокое содержа­ние в шве. Это позволяет в большей степени компенсировать сниже­ние прочности шва, вызванное уменьшением углерода, и достичь равнопрочности сварного соединения с основным металлом.

5. Выбор рациональной формы шва. Форма сварного шва также влияет на стойкость металла против образования кристаллизацион­ных трещин, что связано со спецификой роста кристаллов в швах различной формы (рис. 6.6).

Читайте также  Сварка ПВХ ткани своими руками

Рис. 6.6. Особенности кристаллизации шва при различнойего форме

Кристаллы растут, как правило, в на­правлении, противоположном тепло-отводу, который в свою оче­редь идет перпендикулярно линии сплавления. В центре узких и глубоких швов образуется ослабленная зона, характеризую-щаяся повышенным содержанием серы и фосфора. Эти элементы имеют низ-кую температуру плавления и затвердевают позже стали, поэто­му, находясь длительное время в жидком виде, они сдвигаются рас­тущими дендритами в центр шва, где под действием растягивающих напряжений весьма вероятно образование трещин. В швах, име-ющих более высокий коэффициент формы (y = ) растущие дендриты способствуют выходу легкоплавких эвтектик на поверхность, что увеличивает стойкость против образования трещин. Очень ши­рокие швы имеют слоистое строение. Границы отдельных дендритов пер-пендикулярны силе, действующей на шов при кристаллиза­ции, что уменьшает их сопротивление растяжению. Поэтому стой­кость против образования трещин у швов, имеющих большое значе­ние y, снова снижается. График, показываю-щий зависимость стойкости швов по отно­шению к трещинам от коэффициента формы и содержания в шве уг­лерода, приведен на рис. 6.7.

Рис.6.7. Зависимость стойкости металла против образования кристаллизаци­онных трещин от формы шва

В общем случае при сварке среднеуглеродистых сталей реко­мендуются швы сболее высоким коэффициентом формы, чем для низкоуглеродистых сталей.

6. Термообработка сварного шва. Для ответственных сварных конструк-ций, к которым предъявляются высокие требования по пластичности сварного соединения, целесообразно проведение сразу после сварки термообработки. Обычно проводят высокотемпературный отпуск, который позволяет снять внут-ренние напряжения в сварномшве и околошовной зоне.

Как уже отмечалось, высокоуглеродистые стали относятся к плохосвари-ваемым. Равнопрочность основного металла и металла шва получить не удает-ся. Склонность к образованию трещин очень высокая.Сварка используется только для ремонта. Все мероприятия, применяемые для среднеуглеродистых сталей, подходят и для высокоуглеродистых. После сварки рекомендуется вы-полнять отпуск . Затем для восстановления эксплуатационных свойств может проводиться местная термообработка в виде закалки и последую­щегоотпуска.

Электроды для высокоуглеродистой стали

Электроды для высокоуглеродистой стали представляют собой металлические прутки из стального сплава, обладающего высокой электропроводимостью, защитным покрытием для подведения тока к свариваемым стальным деталям.

Купить электроды для высокоуглеродистой стали esab ok 74,7, esab ok 48,08, esab ok 73,08, esab ok 74,78, esab ok 76,28, esab ok 76,18 и многие другие можно от 1 упаковки. Качество согласно ГОСТ 9466-75. Доставка по России.

Особенности применения электродов для высокоуглеродистой стали

Электроды для высокоуглеродистых сталей покрыты защитным слоем, обеспечивающим защиту раскаленного стержня от действия атмосферы, а также, для стабилизации дуги и легирования сварочного шва. В составе защитного слоя содержатся различные измельченные легирующие элементы.

Сталь, обладающая высоким процентом содержания углерода около 0,6-0,85 %, плохо поддается процессу сварки. Она используется ограниченно, так как обладает низкой пластичностью. Исключение допускается, если применять специализированные электроды для стали с повышенным составом углерода (высокоуглеродистая). Потребность в сплавах с повышенным составом углерода возникает при осуществлении ремонтных работ, при изготовлении пружин, режущих, деревообрабатывающих, бурильных и прочих инструментов, сверхпрочной проволоки, а также изделий, обладающих повышенной прочностью, стойкостью к износу.

Электроды для высокоуглеродистых сталей обеспечивают сварку высокоуглеродистых сталей, после чего сварной шов становится более хрупкими после температурного воздействия. Данный процесс в сплавах с повышенным составом углерода выражен больше, чем в среднеуглеродистых. Также повышается вероятность формирования трещин. В связи с этим, накануне сваривания непременно требуется обеспечить предварительный подогрев свариваемой детали до температуры (350–400)0С. После сваривания требуется осуществить отжиг детали, до тех пор, пока она не охладится до 20°С. Это обусловлено склонностью таких сплавов к хрупкости, химической неоднородностью сварочного шва, а также чувствительностью к холодным и горячим трещинам. К немаловажному условию относится недопустимость сварочных работ на сквозняках, с температурой воздуха менее 5°С.

Для увеличения прочности сварного шва требуется образовывать плавный шов от одного свариваемого металла к другому.

Для соединения изделий и конструкций на стройках из стального сплава с повышенным составом углерода были разработаны электроды для высокоуглеродистых сталей марки НР70, которые классифицируются, как плавящиеся электроды. Для сварки данными электродами подается постоянный ток обратной полярности. Положение сварного шва предпочитается нижнее. Изделия, главным образом, применяются при наплавлении изношенных рельсовых торцов ручной дуговой сваркой.

Особенности сварки сталей с повышенным составом углерода

Перед сваркой необходимо очистить рабочую поверхность от загрязнений: ржавчины, механических шероховатостей, окалины и грязи. Наличие таких примесей может привести к созданию пор.

Перед формированием сварного шва заготовки необходимо прогреть.

Охлаждение конструкций из сталей с повышенным составом углерода для нормализации структуры требуется осуществлять на воздухе в плавном режиме.

Предварительный нагрев ответственных деталей до 400°С обеспечивает достижение необходимой прочности.

Способы сварки сталей с повышенным составом углерода

Оптимальным вариантом осуществления сварочной процедуры является дуговая сварка в ручном режиме при помощи электродов с покрытым слоем. Сварка таких сталей требует множества специфических параметров. Поэтому, используются электроды для высокоуглеродистых сталей, например, марки НР-70. Сварка выполняется постоянным электротоком обратной полярности.

Также для соединения таких сплавов используется сварка под флюсом. Учитывая, что равномерно покрыть рабочую зону флюсом вручную непросто, обычно, в таком варианте, применяется автоматическая технология. Флюс, при расплавлении создает плотную оболочку, предотвращая воздействие атмосферы на сварочный шов. Для сварки под флюсом используются трансформаторы, подающие переменный ток. Эти аппараты обеспечивают создание устойчивой дуги. Достоинством названного способа является малые потери металла из-за слабого разбрызгивания.

Способ газовой сварки применять не рекомендуется, так как происходит выгорание углерода, после чего формируются закалочные структуры, отрицательно влияющие на качество шва.

Плавящие электроды для высокоуглеродистых сталей выпускаются длиной 250-700 мм, при этом, один конец, размером около 30 мм, не покрывается защитным слоем для фиксации электрода в держателе. Длина электрода зависит от его химического состава и сечения.

На рынке реализуется множество разных типов электродов, предназначенных для сварки высокоуглеродистых стальных сплавов.

Электроды, марок УОНИ 1355, покрытые защитным слоем, содержащим углерод, марганец, кремний, серу и фосфор используют для сварки деталей, при стыковых и тавровых швах.

Электроды универсальные — марки АНО 21 образуют мелкочешуйчатый шов, обеспечивая легко отделяемую шлаковую корку.

Электроды марки РЦ от Монолита используют при сварке электродуговыми ручными аппаратами на разных плоскостях, кроме передвижения от верха к низу. Толщина свариваемых деталей 3-20 мм.

Японские электроды для высокоуглеродистых сталей марки LB-52U от фирмы Kobe Steel со сниженным составом водорода применяются для сварки деталей, при односторонней сварке, обеспечивая хорошую ударную вязкость шва.

Стандарты

Производство электродов регламентируется нормативными стандартами, в зависимости от маркировки сплавов стали при сварке:

  • углеродистые, конструкционные высоколегированные и теплоустойчивые сплавы стали регулируются ГОСТом 9467-75;
  • высоколегированные металлы, обладающие особыми свойствами, регулируются ГОСТом 10052-75;
  • изделия для наплавки поверхности регулируются ГОСТом 10051-75.

Отечественные электроды для высокоуглеродистых сталей, согласно ГОСТу, можно подобрать для любой зарубежной марки Американского и Европейского стандарта.

Применение электродов

Сфера использования электродов для высокоуглеродистых сталей обширна: конструкции строительные, элементы речных, морских судов, стыки рельсов, их наплавление, в зависимости от эксплуатационных и технологических требований.

В зависимости от состава детали для сваривания, используется соответствующая марка электрода. Электроды для сварных работ используются в разных промышленных сферах: в газопроводах, водопроводных трубах, конструкциях для строек и пр.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: