Радиография сварных швов

Радиографический контроль: увидеть объект насквозь

Для выявления подповерхностных дефектов радиографический контроль сварных соединений (РК, РГК) был и остаётся одним из наиболее надёжных и достоверных видов НК. Метод «эксплуатирует» проникающую способность рентгеновских лучей. Они по-разному поглощаются металлом и внутренними дефектами, и это отчётливо видно на рентгеновских снимках. По результатам их расшифровки стык можно смело признать годным либо забраковать.

Метод используется для наиболее ответственных объектов, включая магистральные и технологические нефте- и газопроводы, РВС, всевозможные сосуды, работающие под давлением, трубопроводную арматуру и пр. Рентген активно применяется в заводских лабораториях и службах ОТК на предприятиях по производству оборудования для атомных электростанций – насосов, корпусов и теплообменников парогенераторов, котлов и т.д. Метод успешно практикуется и в авиакосмической отрасли – для обследования ответственных деталей из композитов.

Технология проведения рентгеновского контроля сварных швов

Сильные и слабые стороны рентген-контроля сварных швов

Однако при всех своих достоинствах радиографический контроль сварных соединений не идеален. Прежде всего, согласно ГОСТ 7512, данный способ не предназначен для выявления:

  • несплошностей и включений, размер которых в направлении просвечивания меньше, чем удвоенная чувствительность контроля;
  • непроваров и трещин с плоскостью раскрытия, отличающейся от направления просвечивания. При этом величина их раскрытия ниже, чем нормированное значение. Для каждой радиационной толщины оно своё – и может составлять 0,1–0,5 мм;
  • любых несплошностей и включений, изображение которых на снимке «накладывается» на изображение посторонних деталей либо места резкого изменения толщины металла.

На этом недостатки не заканчиваются. Рентген не совершенен ещё и потому, что:

  • основан на использовании рентгеновского излучения – опасного для человеческого здоровья и окружающей среды. Отчасти это проблема компенсируется дополнительными выплатами для персонала, ранним выходом на пенсию и прочими льготами. Во избежание несчастных случаев перед проведением РК рабочую зону огораживают при помощи ленты. Дополнительно используются сигнальные огни для предупреждения посторонних лиц;
  • связан с трудоёмкой фотохимической обработкой снимков. Этот пункт актуален только для традиционного радиографического контроля, построенного на плёночных технологиях. В цифровой радиографии всё проще и быстрее. Но этот способ пока только набирает популярность. ГОСТ Р 50.05.07-2018, например, строго предписывает использование плёнок. А это значит, что нужно разбираться в проявке, знать и соблюдать правила работы с реактивами, решать проблему утилизации отходов и т.д. Всё это создаёт дополнительные требования к персоналу;
  • требует оформления лицензии на работу с ИИИ, санитарно-эпидемиологического заключения и иных разрешительных документов;
  • предполагает существенные затраты. Стоимость рентген-аппаратов достигает несколько миллионов рублей, не говоря о дополнительном оборудовании и постоянной потребности в расходниках (об этом ниже). Правда, цифры здесь относительны, так как проведение РК позволяет избежать по-настоящему страшных аварий, ущерб от которых нельзя оценить никакими деньгами. Как пример – просвечивание швов обечайки реакторной установки на АЭС.

Оборудование и материалы для рентгеновского контроля сварных соединений

Традиционный радиографический метод контроля сварных соединений нуждается и в большом количестве расходных материалов. К таковым относятся форматные и рулонные рентгеновские плёнки, реагенты (проявитель, фиксаж, стартер, концентраты для очистки проявочной техники), флюоресцентные и свинцовые усиливающие экраны. Резку плёнок осуществляют при помощи специальных резаков. От качества расходников и умения работать с ними напрямую зависит качество рентгенограмм и контроля в целом. Первое, на что обращают внимание технадзоры при ознакомлении со снимками в лаборатории, – это оптическая плотность изображения, правильность установки эталонов чувствительности, маркировки, отсутствие вуали и иных «артефактов» на изображении. Снимок считается документом, и это одно из важных преимуществ радиационных методов дефектоскопии. Поэтому и отношение к нему надлежащее: несоответствие карте контроля и НТД служит основанием для пересвета. В общем, правильный выбор плёночных систем и реактивов – это отдельная большая тема. По этой причине большинство дефектоскопистов РГК предпочитают работать с материалами какой-то одной марки. В России чаще всего применяют продукцию AGFA, иногда – Kodak, Fujifilm и «Тасму».

Отдельную категорию принадлежностей составляют аксессуары, задача которых в том, чтобы упростить расшифровку и сделать её более точной. Так, в лабораториях РГК очень востребованы:

  • трафареты (мерные шаблоны). Это прозрачные плёнки, на которые нанесены линейки и прочая вспомогательная разметка. С такими трафаретами намного легче измерять выявленные трещины, поры и другие дефекты;
  • меры оптической плотности. Представляют собой фрагменты рентгеновской плёнки различной оптической плотности. Используются для настройки денситометра и визуального сравнения с имеющимся снимком;
  • универсальные шаблоны радиографа. Более «продвинутая» версия трафаретов с дополнительными разметками, маркерами и иными вспомогательными изображениями. При наличии УШР гораздо проще определять вид дефектов, их диаметр, протяжённость, глубину и др.

Обучение и аттестация специалистов радиографического контроля

Проводить радиографический контроль сварных швов с оформлением заключений могут только аттестованные лаборатории аттестованные и/или сертифицированные специалисты по СДАНК-02-2021 или СНК ОПО РОНКТД-02-2021 (в зависимости от того, в какой Системе НК нужно подтвердить компетенцию, чтобы зайти на объект заказчика). Для аттестации на I и II уровень необходимо иметь среднее или высшее техническое образование какого-либо инженерного вуза либо университета. Дополнительно нужно пройти специализированные курсы по программе, согласованной с Независимым органом по аттестации персонала. Для кандидатов на присвоение II квалификационного уровня вместо этого могут зачесть опыт работы по НК с составлением методических документов.

Подготовка соискателей для допуска к квалификационным экзаменам по радиографическому контролю должна занимать не менее 40 (для I уровня) или 80 (для II уровня) часов. Производственный опыт для II квалификационного уровня должен быть не менее 12 месяцев (для аттестации в Единой системе оценки соответствия).

Что касается III уровня, то для его получения кандидату желательно иметь II уровень. В этом случае для аттестации в ЕС ОС требуется подтвердить 18 месяцев производственного стажа.

Радиографический контроль сварных соединений

Содержание:

  1. Область применения
  2. Принцип работы
  3. Подготовка к контролю
  4. Методика процесса
  5. Расшифровка
  6. Преимущества
  7. Безопасность
  8. Интересное видео

Возможностью применять радиографический метод контроля сварных соединений мы обязаны немецкому физику Вильгельму Рентгену. В 1895 году он открыл электромагнитное излучение на коротких волнах. Эти лучи были названы в честь него рентгеновскими.

Первое широкое применение рентгеновские лучи нашли в медицине. Метод позволил спасти много человеческих жизней. В свою очередь, рентгеновский контроль сварных соединений помогает спасти сварные швы от образовавшихся в процессе сварки дефектов. Метод рентгеновской дефектоскопии позволяет обнаружить в сварных соединениях трещины, раковины, пустоты, полости, инородные включения.

Радиографический контроль сварных соединений это — это метод контроля, позволяющий обнаружить имеющиеся внутри сварных швов погрешности, основанный на изменении характеристик рентгеновских лучей при столкновении с ними. Такой контроль возможен благодаря способности этих волн проникать вглубь металла достаточно глубоко. Контроль этим методом проводится согласно ГОСТу 75-12, в котором перечислены все контролируемые этим способом дефекты.

Область применения

После окончания процесса сваривания и остывания конструкции необходимо оценить качество работы и при обнаружении недостатков принять меры. Контроль начинается с визуального осмотра. При наличии дефектов, имеющихся внутри шва необходимо прибегнуть к другим методам поиска. Они должны относиться к категории неразрушаемых. Не все обладают необходимой точностью. Рентгенография сварных соединений является одним из неразрушаемых способов, дающим точную информацию о состоянии внутри сварного шва.

В дефектоскопии используется возможность рентгеновских лучей проникнуть вглубь на значительное расстояние благодаря тому, что их длина волны является небольшой. При сварке могут возникнуть ситуации, когда выбран неправильный режим или в сварочную ванну попали посторонние предметы. Образование невидимого брака понизит прочность и надежность всей конструкции, которая сможет выдержать меньшие нагрузки, чем планировалось.

Радиографический контроль сварных швов требует наличия специального оборудования. Затраты на него целесообразны в тех случаях, когда требования к характеристикам соединений высокие. Другой вариант — контроль конструкций, где другие методы применять затруднительно или невозможно. Примером может служить рентгенографический контроль сварных соединений трубопроводов.

Существуют лаборатории, специализирующиеся на контроле сварных соединений, где имеется все необходимое оборудование, и работают грамотные профессионалы. При желании контроль можно провести самостоятельно, овладев необходимыми навыками. Имеется возможность взять для этого прибор в аренду. Большой популярностью пользуются портативные аппараты. Они применяются как для контроля трубопроводов, так и для профильных и листовых соединений. Стационарные аппараты могут быть спроектированы индивидуально для решения конкретных задач.

Радиографический контроль сварных соединений трубопроводов проводится согласно отраслевому нормативному документу ОСТ 36-59, где указаны все требования к свариванию этих конструкций. В нем, в частности, сказано, что все данные по проведенному контролю заносятся в специальный журнал и хранятся в течение 10 лет после начала эксплуатации объекта.

Принцип работы

Рентгенография основана на свойстве лучей проникать внутрь материалов, в том числе металлов. Эта способность понижается с увеличением плотности металла и увеличивается с понижением плотности. Поскольку в местах с пустотами и трещинами плотность становится меньше, это сразу регистрируется прибором. При отсутствии дефектов структура металла остается стабильно плотной, и рентгеновские лучи поглотятся материалом. Чем выше плотность, тем степень поглощения будет выше.

Основным элементом аппарата для рентгеноскопии сварных швов служит излучатель, представляющий собой рентгеновские трубки. Его функция — генерировать лучи и выпускать их. Конструктивно излучатель представляет вакуумный сосуд. В нем имеются анод и катод, между которыми образуется электрический потенциал. При сильном ускорении электронов появляются рентгеновские лучи, и задается направление их выхода.

Читайте также  Азы сварочных работ для начинающих

Лучи, прошедшие сквозь металл, падают на специальную светочувствительную пленку. На ней остается отпечаток, по которому можно судить, что находится внутри материала. Полную картину покажет расшифровка рентгеновских снимков сварных соединений. При желании или необходимости получать сведения постоянно, используют сцинтилляторы. Это дает возможность выводить изображение на монитор.

Имеется возможность сделать фотографии, получив рентгенограмму. На рентгенограмме будет иметься негативное изображение соединения. При наличии включений или, наоборот, пустот появятся их очертания другого цвета. Полученную рентгенограмму следует сравнить с типовой рентгенограммой для этого типа свариваемых деталей. Метод позволяет точно и оперативно оценить состояние сварного шва.

Подготовка к контролю

Перед началом процесса следует произвести подготовительные операции. Части будущего соединения внимательно осматривают. При наличии на них загрязнений и шлаков необходимо тщательно их очистить и обезжирить растворителем или спиртом. Это делается для того, чтобы наружные дефекты при просвечивании не вносили искажение в окончательный результат.

Пленки заряжают в соответствующие кассеты. Все соединения разделяют на отдельные интервалы и маркируют их. Это делается для того, чтобы можно было точно определить, какой снимок относиться к конкретному участку свариваемого шва. В том же порядке маркируют кассеты и пленки. Если шов имеет большую протяженность, возможен выборочный рентген-контроль сварных швов.

Также необходимо подготовить оборудование, предназначенное для радиографии сварных швов. Вначале необходимо выбрать подходящий источник излучения. Критериями являются чувствительность, толщина металла и его плотность, конфигурация деталей, требуемая производительность. К примеру, для радиографического контроля сварных соединений, где возможны дефекты, имеющие большой размер, подходят изотопы, обладающие высокой энергией. Это обеспечит небольшое время просвечивания. Выбор пленки обусловлен толщиной металла и его плотностью. На приборах выставляют оптимальные режимы.

Методика процесса

Рентгенография сварных швов проходит несколько этапов:

  1. Выбрать источник излучения.
  2. Выбрать подходящий тип пленки.
  3. Установить на оборудовании оптимальные режимы.
  4. Поместить аппарат внутри изделия или снаружи и включить его.
  5. Начать просвечивание сварного шва.
  6. Вынуть пленку и проявить ее.
  7. Произвести расшифровку.
  8. Занести результаты в журнал установленной формы.

Выбранную кассету закрепляют на изделии. Для получения хорошей резкости изображения и определения достоверного размера дефекта на приборе следует установить эталон чувствительности. Эталон должен быть изготовлен из материала, характеристики которого приближены к характеристикам свариваемого металла.

В ГОСТе 7512 указаны три предпочтительных типов эталонов, применяемых для рентгена сварных швов:

  1. Канавочные. Пластина, имеющая шесть канавок. Ширина у них одинаковая, а глубина разная.
  2. Проволочные. Имеет семь проволок.
  3. Пластинчатые. Пластина, имеющая отверстия нужных форм и размеров.

Проверяемые изделия можно разместить по отношению к аппарату двумя способами. Если они небольшие и могут поместиться в помещении, соединения помещаются внутри стационарного аппарата. При выездном контроле применяют компактные модели оборудования и устанавливают их на изделие.

Чтобы осуществить рентгенографический контроль сварных соединений шов следует размещать строго между излучателем и светочувствительной пленкой. После включения излучателя рентгеновские лучи начнут проходить через металл и попадать на пленку. Через несколько секунд снимок будет готов. Аппарат выключают. Кассету с пленкой вынимают и отдают для обработки и расшифровывания. После того, как будет понятно, что результат получен, аппарат можно снять с изделия или извлечь из него. Иначе, необходимо сделать повторный контроль.

Расшифровка

Расшифровку рентгенограмм осуществляют в затененном помещении на негатоскопе. Он представляет собой устройство, назначением которого является просмотр на просвет радиографических снимков, в том числе рентгенограмм. В негатоскопе предусмотрена возможность регулировки яркости освещения. При слишком большом его значении мелкие дефекты могут быть пропущены.

После расшифровки составляется заключение. Перед тем, как прибегнуть к этому методу, необходимо узнать, какие дефекты сварного шва выявляются с помощью радиографического контроля. К ним относятся:

  • подрезы;
  • непровары;
  • трещины;
  • поры;
  • инородные включения;
  • шлаки.

Помимо этого, можно оценить величину вогнутости и выпуклости в местах, где визуальный осмотр невозможен. При записи результатов используются сокращения. Так, «Т» означает трещину, «Н» — непровар, «П» — пору, «Ш» — шлак, «В» — включение вольфрама, Пдр» — подрез. Рядом с буквами ставят размеры дефекта. Учитывается также характер распределения.

По этому признаку недостатки делятся на группы:

  1. Отдельные.
  2. Цепочки. На одной линии более трех дефектов.
  3. Скопления. Расположение в одном месте не менее трех дефектов.

Размер дефекта обозначается в миллиметрах.

Преимущества

К достоинствам метода относятся:

  • достоверность;
  • быстрота контроля;
  • определение места расположения;
  • оценка размера;
  • выявление скрытых недостатков;
  • широкая область применения.

К недостаткам относится высокая цена оборудования, и необходимость изучения правил его использования.

Безопасность

При всех своих достоинствах метод является потенциально опасным для здоровья. Поэтому необходимо выполнять экранирование прибора. Контролер не должен находиться без необходимости в зоне облучения. Доступ туда посторонним лицам должен быть запрещен. Для этого следует вывесить предупреждающие знаки.

При работе в помещении его стены надо покрыть экранирующими пластинами. Контролер должен быть обеспечен комплектом защитной одежды. Перед началом процесса необходимо проверить исправность оборудования.

Интересное видео

Радиографический контроль сварных швов и технология его проведения

Производство и установка сварочных конструкций осуществляется в строгом соответствии со строительными нормами, техническими условиями и правилами, обозначенными в ГОСТе. Все существующие сегодня способы контролировать сварной шов, а также другие металлические изделия дают возможность выявлять всевозможные дефекты, которые можно повстречать на практике сварки.

Соответствующие методы контроля применяются в зависимости от ответственности сварных швов и конструкций. Самыми целесообразными комплексными испытаниями на сегодняшний день считают те, что включают целый ряд параллельно использующихся методов контроля, например, ультразвуковой контроль сварных швов и радиографическая дефектоскопия.

Радиографический контроль и цели его проведения

Рентгеновская дефектоскопия или же радиографический контроль сварочных швов, соединений чаще всего применяется с целью проверки уровня качества магистральных газо- и нефтепроводов, технологических трубопроводов, промышленных трубопроводов, металлоконструкций, а также композитных материалов и технологического оборудования в самых разных отраслях промышленности.

Рентгенографический контроль производят с целью выявления поверхностных и внутренних дефектов, к примеру, шлаковых включений, газовых пор, микротрещин, подрезов и шлаковых включений.

Наряду с другими физическими методами контроля радиографический выступает одним из самых эффективных и надёжных средств выявления всевозможных дефектов.

Выявленные дефекты: искусственные включения, нарушения геометрии

Основан данный метод дефектоскопии на различном поглощении рентгеновских лучей материалами.

Такие дефекты, как включения инородных материалов, различные трещины, поры и шлаки проводят к ослаблению в той или иной степени рентгеновских лучей. Регистрация интенсивности лучей при помощи рентгенографического контроля помогает определить не только наличие, а и расположение разнообразных неоднородностей проверяемого материала.

Данный метод показал свой высокий уровень эффективности на практике в процессе контроля качества, которому подвергаются сварочные швы и соединения.

Преимущества рентгенографического метода:

  • Максимально точная локализация даже самых мельчайших дефектов;
  • Молниеносное обнаружение дефектов сварочных соединений и швов;
  • Возможность произведения чёткой оценки микроструктуры: величины вогнутости, выпуклости корня шва даже в самых недоступных местах для внешнего осмотра.

Радиографическая дефектоскопия, контролирующая сварочные конструкции также даёт возможность обнаруживать внутренние дефекты в виде пор, непроваров, вольфрамовых, шлаковых, окисных и других включений, подрезов и трещин, усадочных раковин и прочего.

Согласно общим положениям ГОСТа 7512 82

Радиографический контроль не используют при:

  • Наличии непроваров и трещин, величина раскрытия которых меньше стандартных значений, а плоскость раскрытия не соответствует направлению просвечивания;
  • Любых несплошностях и включениях, имеющих размер в направлении просвечивания меньше удвоенной чувствительности контроля;
  • Всяческих несплошностях и включениях в случае, когда их изображения на снимках совершенно не соответствуют изображениям построенных деталей, резких перепадов трещин металла, который просвечивается, а также острых углов.

Наиболее достоверный способ проконтролировать основной металл и сварной шов – провести дефектоскопию с рентгеновским просвечиванием металлов. Только так можно определить и вид, и характер обнаруженных дефектов, с высокой точностью определить их месторасположение и заархивировать результаты контроля в конечном итоге.

Принцип работы радиографической установки

Радиографический контроль относится, в первую очередь, к системам цифровой дефектоскопии радиационного типа. Радиационное изображение в данных системах превращается в цифровой массив (изображение), который впоследствии подвергается разным видам цифровой обработки, а затем выводится на монитор персонального компьютера в виде полутонового изображения. К слову, нередко металлография (классически метод) использует для исследования, а также контроля металлических материалов радиометрические установки.

Поскольку метод базируется на принципе измерения рентгеновского излучения или гамма-излучения, которое проходит сквозь материал контролируемого объекта, детектором для контроля выступает фотодиод со сцинтиллятором, наклеенным на него. Сцинтиллятор под воздействием излучений испускает видимый свет, выход которого пропорционален квантовой энергии. В конечном итоге исходящее световое излучение вызывает ток внутри фотодиода.

Таким образом, детектор преобразовывает проходящее сквозь контролируемое изделие излучение в электрические сигналы, величина которых прямо пропорциональна интенсивности лучей гамма.

Приёмник излучения рентгена – это линейка сцинтилляционных детекторов, которые по отдельности оснащены собственными усилителями, образующими единый независимый канал с детекторами. Количество детекторов в линейке строго зависит от необходимой ширины контролируемой зоны. Все каналы детекторного блока опрашиваются по очереди, а с помощью АЦП (аналого-цифровой преобразователь) все полученные сигналы приобретают цифровой вид. Впоследствии полученный в ходе опроса детекторных блоков цифровой массив передаётся на ПК.

Радиографический контроль трубы

Посредством перемещения детекторных блоков по отношению к контролируемому сварочному соединению получают непрерывно считываемый массив данных, записывающийся в память ПК с целью последующего и более детального исследования, архивирования. Для оперативной оценки качества в лаборатории контроля в реальном времени эти данные выводятся в виде полутонового изображения прямо на монитор.

Читайте также  Мощные диоды для сварочного аппарата

Для обработки металла резанием необходимо приобрести несколько типов станков. Подробнее о том, как происходит процесс, читайте в этой статье.

Хотите сделать бизнес в сфере металлообработки? О том, какие материалы и оборудование для этого нужно приобрести, читайте по https://elsvarkin.ru/prakticheskoe-primenenie/kak-samomu-sdelat-metallicheskij-karkas-dlya-karkasnogo-doma-i-garazha/ ссылке.

Главные требования к рентгеновским аппаратам

В процессе радиометрическом методе флуктуации интенсивности проходящего сквозь объект энергетического спектра не оказывают никакого воздействия на чувствительность контроля, так как изображение, фиксируемое на пленке рентгена изображение определяют посредством интегральной дозы излучения в период экспозиции.

Именно поэтому во время радиографического контроля разрешается применять рентгеновские аппараты любого существующего типа. В большинстве случаев изготовители рентген-аппаратов не приводят никаких данных о флуктуации интенсивности излучений, поскольку данная величина не является критичной.

Стоит отметить, что радиометрия представляет собой метод измерения при построчном сборе данных в режиме реального времени.

Для сканирования одной строки могут потребоваться десятые доли секунды. Исходя из этого рентген аппарату предъявляются 2 основных требования, а именно:

1) Плотность потока гамма-излучения, проходящего сквозь контролируемую толщину проверяемого объекта, должна быть настолько велика, чтобы этого времени было достаточно для регистрации изменения толщины объекта вдоль просканированной области

2) Интенсивность гамма-излучения обязательно должна быть постоянной

Таким образом, для качественного радиометрического контроля необходимы высокостабильные источники ионизирующего излучения, имеющего максимально возможную плотность лучевого потока, а также максимальный энергетический спектр.

С целью сравнения современных рентгеновских аппаратов панорамного типа с постоянным потенциалом разработан специальный переносной прибор, обеспечивающий проведение измерений интенсивности излучения в полевых условиях.

Виды радиометрических аппаратов:

  1. Аппараты, которые обладают фиксированной частотой флуктуаций интенсивности гамма-излучения. Регулярные перемены интенсивности рентгеновского излучения создают на изображении поперечные полосы. При этом среднеквадратичные отклонения в интенсивности излучения в несколько раз превышают статистические шумы. Возможно ослабление данных флуктуаций программным способом. С этой целью радиометрическую установку оснащают программами, определяющими спектральную долю флуктуаций для каждого аппарата. Подобные рентгеновские аппараты считаются условно применимыми для радиометрического контроля сварочных швов и соединений.
  2. Рентгеновские аппараты с постоянным потенциалом, которые обладают высокочастотными флуктуациями, случайными во времени. У таких приборов величина отклонений интенсивности гамма-излучения более одного процента. В радиометрическом контроле сварочных конструкций не рекомендуется применять такие устройства.
  3. Идеальным вариантом является оборудование, стабильность излучения которого превышает 0,5 процентов, а частота флуктуаций имеет показатель не более 0,1 Гц. Низкочастотные изменения интенсивности излучения столь незначительной величины можно легко устранить на изображении программным способом.

Специалисты рекомендуют рентгеновский программный аппарат модели РПД200П, который после соответствующей модификации системы питания показал, что может успешно применяться в процессе проведения радиометрического контроля высокого качества.

Развивающаяся стремительными темпами вычислительная и электронная техника открывает широкие возможности для удешевления и усовершенствования радиометрической аппаратуры.

Проведённые с помощью аппарата РПД200П панорамного типа измерения доказывают, что на базе оборудования этого типа можно создать целые радиометрические комплексы.

Радиографический контроль сварных швов и соединений

Среди методов неразрушающей диагностики, лучевой – наиболее точный. Аппаратурой радиографического контроля сварных соединений можно обнаружить внутренние дефекты металла: непровары, микротрещины в зоне термовлияния, раковины, шлаковые включения. Рентгеноскопия необходима при монтаже трубопроводов, производстве опорных каркасов, сварных деталей, работающих на излом. Процедура испытаний регламентирована ГОСТ 7512-86. Данные заносятся в специальные журналы. Применение рентгенографического контроля сопряжено с вредным лучевым воздействием на операторов. Для них разработаны правила техники безопасности.

Сущность метода

Главная цель контроля – выявление несплошностей, способных стать причиной аварии. В основе радиографического метода контроля сварных соединений лежит способность гамма-лучей, рентгеновского излучения рассеиваться при прохождении разнородных сред. По снимку определяют место дефекта, его размеры. Рентгеновский контроль дает качественный и количественный результат.

Диагностический диапазон ограничен чувствительностью радиографического прибора для проверки сварных соединений.

Дефектоскоп НЕ выявляет:

  • пустоты размером меньше стандартных значений на 50%, параллельных направлению луча;
  • несплошности, инородные включения, меньше двух значений чувствительности, расположенные по направлению пучка;
  • включения и трещины, на изображении совпадающие с гранями, острыми углами проверяемой детали.

Все остальные дефекты лучевая радиографическая диагностика распознает. Раковины, трещины, шлак, непровары хорошо видны на экране прибора или снимке. При прохождении зоны сварного соединения лучи не изменяют направление, если металл однородный. На границе разделения сред часть лучей отражаются, рассеиваются, на картинке появляются затемненные участки.

Преимущества и недостатки

Современная радиография остается приемлемым и востребованным методом неразрушающего контроля. Плюсы метода:

  • за долю минуты дает представление о качестве соединений, полученных любой сваркой (ручной электродуговой, газовой, точечной, радиальной и другими видами);
  • по точности результатов радиографическая диагностика превосходит другие методы неразрушающего контроля сварных соединений;
  • прибор выявляет широкий спектр структурных изменений в металле;
  • на картинке видно место расположения дефекта, его тип, размеры;
  • радиографический метод применим для полевых работ: проверки трубопроводов, строительных объектов.

У радиографического метода диагностики сварных соединений имеются недостатки:

  • рентгенография невозможна без специальных приборов, это дорогое оборудование;
  • в качестве расходника используется светочувствительная пленка или пластинки;
  • для диагностики необходимо длительно обучать контролеров, они сдают экзамены в контролирующих организациях;
  • качество контроля зависит от умелой настройки диагностического оборудования;
  • изотопное гамма-излучение и рентгеновские лучи опасны для здоровья.

По точности результатов радиографическая диагностика превосходит другие методы неразрушающего контроля сварных соединений, однако необходимо дорогостоящее оборудование и хорошо обученные контролеры.

Свойства и особенности рентгеновских лучей

Проходимость материалов зависит от длины генерируемых лучей. Рентгеновский поток при прохождении плотных структур поглощается: лучи рассеиваются в пространстве. Чем ниже плотность проверяемых сварных соединений трубопроводов, металлоконструкций или деталей, тем четче получаемое радиографическое изображение. Пустоты, раковины на снимке буду темнее.

Картинка получается благодаря способности некоторых химических реагентов светиться под действием излучения. Они сохраняют эту способность несколько секунд. Этого достаточно, чтобы светочувствительная пленка засветилась.

В процессе рентген-контроля сварных швов выявляются участки разной плотности. Если металл однородный – снимок будет светлым, однотонным. При пустотах появятся затемнения.

Действие некоторых дефектоскопов основано на способности ионизированного воздуха пропускать электрический ток. Проводимость напрямую зависит от степени ионизации. Лучи расщепляют молекулы на своем пути, превращают их в коктейль анионов и катионов. Применение этого свойства помогает получать изображение на осциллографе.

Устройство и принцип работы радиографического оборудования

В любом приборе, используемом для радиографического контроля сварных соединений, имеется излучатель. Он генерирует излучение необходимой частоты, длины. Это – сердце дефектоскопа.

Рентгенографический излучатель представляет собой колбу с откаченным воздухом, в которой расположены анод, катод, элемент накала. Во время разгона электронов возникают лучи. Они образуют направленный пучок. Он пропускается сквозь толщу сварного соединения.

Другая важная часть оборудования для радиографического контроля – фотодиод. Он преобразует энергию лучей в световую энергию. В радиографических приборах, контролирующих качество сварного соединения, устанавливают блоки детекторов, создающих изображение.

Световой сигнал можно преобразовать в цифровой формат, информация поступает в накопитель. На экране данные отображаются в виде полутоновой картинки.

Требования к аппаратам

Рентгеноконтроль сварочных швов зависит от нескольких факторов:

  • интенсивности пропускаемого потока, чтобы с учетом рассеивания получалось четкое изображение;
  • генератор должен работать с одинаковой мощностью на протяжении исследования, только при этом условии показания будут достоверными;
  • требуется высокая чувствительность элемента, улавливающего световой сигнал, иначе картинка будет смазанной;
  • способность прибора улавливать дефекты определяется минимальными размерами распознаваемого объекта, от размера пустот или включений напрямую зависит прочность сварного соединения.

Для радиографического контроля используют приборы различных типов, марок. Их подбирают в зависимости от толщины проверяемого металла, химического состава, предполагаемой зернистости.

Методика проведения радиографического контроля

Проверка проводится на подготовленных соединениях. Их предварительно очищают от окалины, плотных окислов, зачищают до металлического блеска. От качества подготовки поверхности во многом зависит точность полученных результатов.

Процесс радиографического контроля сварных швов состоит из нескольких этапов:

  1. прибор устанавливают так, чтобы с одной стороны проверяемой зоны находился излучатель, с другой – датчик (при использовании любых видов дефектоскопов проверяемый металл всегда находится между двумя частями приборов);
  2. на 10-20 минут включается электропитание, за это время пучок пронизывает сварной валик, поступает на датчик (дефектоскопы работают от сети или на аккумуляторах);
  3. датчик подает сигнал на преобразователь, в итоге получается картинка на пленке, пластинке или экране прибора (вид изображения зависит от марки используемого радиографического прибора для контроля сварных швов);
  4. цифровой аналоговый сигнал записывается в накопитель информации.

В течение небольшого промежутка времени контролер получает изображение. Он расшифровывает его, фиксирует обнаруженные дефекты в специальном журнале. Иногда контролер только делает снимки, расшифровывает их другой специалист.

Техника безопасности

При радиографическом или рентгенографическом контроле сварных соединений важно соблюдать меры предосторожности. Лучевой поток легко проникает в ткани, облучает их в доли секунды. При большой дозе оказывает поражающее действие. Во время пользования прибором контроля необходимо это учитывать.

Основные рекомендации контролерам:

  • необходимо экранировать оборудование, для этого используют свинцовые пластины;
  • излучатель желательно располагать как можно дальше от людей;
  • обязательно должен вестись учет времени пребывания в зоне риска;
  • в зоне излучателя возможна ионизация воздуха, необходимо убрать электрооборудование.

Радиографический метод контроля сварных соединений в минимальных дозах не опасен. Оказывает минимальное воздействие на человека. Если соблюдать ТБ, можно минимизировать риск облучения контролера.

Радиографическая диагностика швов – современный и точный метод определения дефектов. Производители выпускают компактные модели приборов с различной мощностью лучевого потока. Можно выбрать необходимое диагностическое оборудование. Для специализированных компаний лучевой контроль стал стабильным источником доходов. Услуги востребованы.

Читайте также  Сварочный инвертор итальянского производства

Как и зачем проводят радиографический контроль сварных соединений, плюсы и минусы методики

Новички постоянно сталкиваются с проблемами во время соединения металлических деталей. Чаще всего сварщик не видит деформаций внутри шва, появляющихся из-за нарушения технологии соединения.

Внешний осмотр конструкции не поможет определить скрытые дефекты.

Для сварки в условиях дачи или дома — это не так катастрофично, но в цеху даже мелкие недостатки готового изделия могут не только уменьшить прибыль, но и угрожать безопасности при использовании конструкций.

Сварные швы контролируют разными методами. Элементарный — визуальный анализ швов на наличие заметных деформаций.

Также есть и сложные способы контроля — с применением специального оборудования. Один из этих методов — тема нашей статьи. Мы расскажем о радиографическом контроле швов: что это такое, как работает метод, и зачем его применяют.

  • Общая информация
  • Принцип работы
  • Особенности рентгеновских лучей
  • Достоинства и недостатки метода
  • Алгоритм контроля
  • Техника безопасности
  • Заключение

Общая информация

У радиографического метода контроля есть несколько названий. Его называют также рентгенографией, рентгеноскопией, рентгенографическим контролем. Он основан на использовании рентгеновского излучения.

На место соединения деталей устанавливают специальный рентген-аппарат. Он работает так же, как и аппарат для рентгена человеческих костей. Радиоизлучение проходит сквозь металл.

Если в шве есть трещины или поры, излучение без проблем выходит через них. Если соединение плотное, излучение «останется» внутри.

Принимающий прибор запечатляет то, где и как проходят лучи, и закрепляет это на снимке. С его помощью можно увидеть, какие дефекты образовались внутри шва, и где именно они находятся.

Контроль с использованием рентгеновского излучения — метод, который с большой точностью может выявить проблемные места соединений.

Способ радиографического контроля сварных соединений хорошо проявляет себя в проверке трубопроводных конструкций, металлических изделий с серьезными требованиями к качеству и крупногабаритных соединений. На стройплощадках радиография пользуется особым признанием мастеров.

Принцип работы

«Сердцевиной» рентген-аппарата можно назвать излучатель, генерирующий и выпускающий свободные частицы. Он состоит из вакуумного сосуда с анодом, катодом и его накалом.

Каждая деталь заряжена и по сути представляет собой электрод. Они направляют частицы, придавая им ускорение, тем самым создавая рентгеновский луч.

Для тех, кто хочет понимать процесс радиографического контроля сварных соединений в подробностях, мы расширим объяснение. Электроны, испускающиеся катодом, через потенциал электрического поля между положительным и отрицательным электродами набирают ускорение.

На этом этапе излучение уже появляется, но еще не обладает достаточной силой. Но лучи «врезаются» в анод и тормозятся, из-за чего образовываются еще больше.

Во время столкновения лучей с анодом, последний тоже отдает электроны. Вместе все эти частицы формируют целостное рентгеновское излучение.

Выходящие лучи направляются вакуумной трубкой и внешними деталями аппарата. Частицы попадают на металл, и, если он дефектный, то проходят через шов насквозь.

Если же соединение нормальное, лучи остаются внутри него. Но не все электроны «встраиваются» в металл. Те, что задерживаются на поверхности, служат основой рентгеновского снимка.

На нём можно определить, сколько лучей прошло через соединение. Если металл пронизан трещинами и сквозными порами, на снимке можно будет увидеть много прошедших лучей.

Так можно узнать не только о присутствии деформации, но и о её размере и размещении.

Особенности рентгеновских лучей

Для того, чтобы понимать принципы рентгенографического анализа, нужно учитывать характеристики излучения, из-за которых этот анализ и работает. Основное свойство луча — возможность проходить через материал, в том числе и металлы.

Если металл очень плотный, лучи будут проходить хуже, и наоборот: металл с низкой плотностью легко пропускает их. С радиографическим контролем качества это связано тем, что плотность низкая именно в месте дефекта.

Эти участки металла легко пропускают лучи. Последние запечатляются на приёмнике. Если же структурно соединение без «пробелов», то лучи будут не проходить, а поглощаться конструкцией. Степень поглощения излучения прямо пропорциональна плотности шва.

Со снимками тоже ничего сложного. Некоторые химические элементы встречаясь с рентгеновскими лучами испускают свечение. Часть фото пластины, которая чувствительна к свету, напыляется этими элементами.

Из-за их свойств и появляются снимки. Эти химические и физические основы позволяют использовать рентген для изучения как живого организма, так и сварных соединений.

Поговорим и о негативных нюансах. То, что большое количество излучения рентген-аппарата может навредить человеку, не выдумка. Рентгеновские лучи взаимодействуют с живыми тканями и клетками, постепенно меняя их структуру.

Если дозы облучения будут слишком большими, человек, который работает с ними, может получить лучевую болезнь. Предотвратить это можно только учитывая правила техники безопасности и руководство по применению радиографического аппарата.

Добавим, что воздух, которым мы дышим, может пропускать ток при наличии излучения. Рентгеновское излучение ионизирует атмосферные газы, разделяя их молекулы на положительно и отрицательно заряженные частицы.

Когда эти частицы перемещаются направлено, появляется электрический ток.

Достоинства и недостатки метода

Перечислим плюсы и минусы радиографического контроля сварных соединений.

  • Анализ качественных характеристик шва рентгеном точный и редко пропускает недочёты мимо себя
  • Метод помогает быстро найти дефекты даже на самом глубоком уровне соединения
  • Рентгеновский снимок показывает место, в котором есть дефект, и его приблизительный размер
  • На радиографический анализ уходит немного времени, а из средств нужен только рентген-аппарат
  • Контролировать качество можно у сложных конструкций с труднодоступными местами (например, трубопроводных систем)
  • То, насколько качественным будет анализ, зависит от того, как мастер настроит контролирующий аппарат
  • Малогабаритные модели рентген-аппаратов, которые чаще используют в строительстве, дорогие
  • Расходники для аппарата найти сложно, и стоят они, так же, как и само устройство, достаточно
  • Контроль качества с применением радиографического излучения опасен для здоровья

Алгоритм контроля

Технология контроля радиографией несложная и основами похожа на ту, что используют врачи рентген-кабинетов. Человек, который проводит анализ, настраивает аппаратуру в зависимости от плотности металла.

Раньше мы уже сказали о том, что итог зависит именно от того, насколько плотный металл.

Соединение нельзя проверять сразу после сварки. Перед контролем место шва нужно обработать. Также нужно убрать остатки шлака и очистить металл от лишнего. Если аппарат мобильный, его помещают на конструкцию.

Если же устройство закреплено в одном месте, соединение помещают внутрь.

Плёнку размещают с одной стороны шва, а излучатель — с другой. Затем радиографический аппарат включают, излучение идёт через конструкцию и запечатляется на плёнке.

На получившемся снимке просматриваются все деформации. После выключения аппарата нужно подождать примерно полминуты. Затем детали и рентгенограф разделяются, а получившиеся снимки анализируются специалистами или самим контролером.

Техника безопасности

Выше было упомянуто об опасности рентгеновского излучения для живых организмов. Даже одноразовое использование рентгенографа может повлиять на вас, поэтому не обращать внимания на правила безопасности не стоит.

Если у вас в планах частое использование радиографического излучения для анализа швов, то некоторые рекомендации для вас просто обязательны к запоминанию.

  1. Основное правило — экранизация рентген-аппарата. Установка экрана не позволит излучению выходить за границы области контроля. Для анализа сварочных швов в качестве экрана можно взять листы из металла. Если ваша работа проходит в закрытой комнате, то её стены желательно обложить экранными листами. С ними излучение будет менее вредным для других рабочих объекта или цеха.
  2. Не находитесь в месте рентгенографического контроля долго. При работе на открытом воздухе, во время анализа отходите от устройства на несколько метров. При работе в помещении старайтесь выходить за дверь, пока идёт излучение. Также используйте защитную униформу в виде маски, перчаток и отражающего костюма. Пока идёт анализ, мимо аппарата не должны ходить другие рабочие.
  3. Еще перед началом контроля вы должны быть уверены в исправности аппарата и правильности выставленных настроек. Часто эти два фактора при упущенной проверке становятся причиной несчастных случаев.
  4. Каждый следующий радиографический анализ контролируйте, какое количество лучей вы получаете на выходе. Лучи в небольших дозах безопасны, но могут «собираться» в организме, становясь основой заболеваний, связанных радиацией. Дозировка, которую вы получили во время одного контроля, должна выйти из организма до следующего. Для того, чтобы вы могли следить за этим, есть специальные дозиметры.
  5. Смотрите за тем, насколько ионизирован воздух. Мы упоминали, что увеличение степени ионизации делает воздух хорошим проводником электрического тока. Это в большей степени опасно, если помещение закрыто.

Заключение

Это основы, которые нужно знать о методе радиографического анализа сварных соединений. Использование излучения помогает найти дефекты даже в самых глубоких слоях шва.

В производственных цехах используют стационарные модели рентген-аппаратов, на выездных работах — более компактные. Но в обоих случаях эффективность этой технологии на уровне.

Чтобы понимать характеристики дефектов на снимках, нужно практиковаться. Но эта практика подарит вам полезные навыки в точном поиске трещин и других недочётов сварного соединения, которое на вид может казаться целостным.

Если вы пользовались рентгенографией, можете поделиться своим опытом с новичками в комментариях. Желаем удачи!

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: