Магнитопорошковый контроль сварных соединений

Магнитные методы контроля сварных швов. Магнитная дефектоскопия сварки

Содержание

  1. Сущность магнитной дефектоскопии, её методы
  2. Магнитопорошковый метод контроля (магнитопорошковая дефектоскопия)
    • Технология магнитопорошкового контроля
    • Эффективность магнитопорошковой дефектоскопии
    • Дефектоскопы для магнитопорошкового контроля
    • Видео: магнитопорошковая дефектоскопия с применением люминисцентных концентратов
  3. Магнитографический метод контроля сварных соединений
    • Технология магнитографического контроля
    • Эффективность магнитографического контроля
    • Магнитографический дефектоскоп и магнитная лента
  4. Индукционный метод контроля

Сущность магнитной дефектоскопии, её методы

Магнитная дефектоскопия — один из методов неразрушающего контроля сварки. Сущность магнитных методов контроля сварных соединений заключается в выявлении рассеянных магнитных потоков, которые появляются в намагниченных изделиях в случае присутствия в них различных дефектов. Намагниченными материалами могут служить железо, никель, кобальт и некоторые сплавы на их основе.

Намагничивание изделия можно добиться, если, пропуская ток по нему, создать вокруг изделия магнитное или электромагнитное поле. Наиболее простым способом получения магнитного потока является пропускание тока плотностью 15-20 А/мм по виткам сварочной провода, намотанного витками на изделие. Количество витков обычно составляет 3-6. Для намагничивания соединения рекомендуется применять постоянный ток.

Принцип выявления дефекта в сварном шве состоит в следующем. Магнитный поток, проходя по сварному соединению и встречая на своём пути дефект, начинает обходить его из-за того, что магнитная проницаемость дефекта значительно ниже, чем магнитная проницаемость основного металла, а электрический ток, как известно, идёт по пути наименьшего сопротивления.

В результате этого, часть силовых линий магнитного потока вытесняется дефектом на поверхность, образуя местный рассеянный магнитный поток, см. рисунок:

Магнитные потоки рассеяния могут регистрироваться разными способами. По способу регистрации методы магнитного контроля разделяются на магнитопорошковый метод контроля (магнитопорошковая дефектоскопия), магнитографический метод контроля и индукционный метод контроля.

Магнитопорошковый метод контроля (магнитопорошковая дефектоскопия)

Как следует из названия, магнитопорошковая дефектоскопия проводится с помощью магнитного порошка. Существуют два метода магнитопорошкового контроля: сухой и мокрый.

В случае сухой магнитопорошковой дефектоскопии на поверхность сварного соединения наносится сухой магнитный порошок (железные опилки, окалина и др.). В случае мокрой магнитопорошковой дефектоскопии магнитный материал наносится в виде суспензий магнитного порошка с керосином, маслом, мыльным раствором.

Под действием электромагнитных полей рассеяния, частицы порошка равномерно перемещаются по поверхности сварного соединения. Над сварными дефектами магнитный порошок скапливается в виде валиков. По форме и размерам этих валиков можно судить о форме и размерах найденного дефекта.

Технология магнитопорошкового контроля

Метод магнитопорошковой дефектоскопии включает в себя следующие технологические операции:

1. Подготовка поверхности сварного соединения к проверке. Поверхности необходимо очистить от загрязнений, окалины, сварочных брызг, наплывов и шлака после сварки.
2. Подготовка суспензии, заключающаяся в динамичном перемешивании магнитного порошка с транспортируемой жидкостью
3. Намагничивание контролируемого изделия
4. Нанесение суспензии или магнитного порошка на контролируемую поверхность
5. Осмотр контролируемой поверхности сварного соединения и определение участков, на которых присутствуют отложения порошка
6. Размагничивание сварного соединения.

Эффективность магнитопорошковой дефектоскопии

Метод магнитопорошковой дефектоскопии обладает хорошей чувствительностью к тонким и мельчайшим сварным трещинам. Он прост в исполнении, даёт наглядные результаты, и не растянут по времени.

Чувствительность магнитопорошкового метода может различаться в каждом отдельном случае. Зависит это от следующих причин:

1. Величины частиц порошка и от метода его нанесения
2. Напряжения магнитного поля, воздействующего на сварное соединение
3. Рода применяемого тока (переменный или постоянный)
4. От формы и величины дефекта, от глубины его расположения, а также от того, как дефект ориентирован в пространстве.
5. От способа и направления намагничивания соединения
6. От качества и формы контролируемой поверхности

С помощью магнитных методов контроля лучше всего обнаруживаются плоскостные дефекты: сварочные трещины, несплавления и непровары, если наибольший их габарит ориентирован под прямым углом (или близким к прямому) относительно направления магнитного потока.

Дефекты округлой формы (поры, раковины, неметаллические включения) могут не создать достаточного рассеянного потока и при контроле обнаруживаются хуже всего.

Дефектоскопы для магнитопорошкового контроля

В состав дефектоскопов для такого метода контроля входят источники тока, устройства для подведения тока к контролируемой поверхности, приборы для намагничивания поверхности (соленоиды, электромагниты), устройства для нанесения магнитного порошка или суспензии на проверяемую поверхность, измерители величины тока (или напряжённости магнитного поля).

Магнитопорошковые дефектоскопы подразделяются на стационарные, передвижные и переносные. Стационарные дефектоскопы нашли широкое применение на заводах и других предприятиях с крупносерийным выпуском различной продукции. Среди них такие модели, как УМДЭ-2500, ХМД-10П, МД-5. Такое оборудование позволяет контролировать качество сварных соединений различной формы. Они способны обеспечить высокую производительность контроля — от нескольких десятков, до нескольких сотен изделий в час.

Распространённые, серийно выпускаемые модели переносных и передвижных дефектоскопов — это ПМД-70 и МД-50П. Переносной дефектоскоп для магнитного контроля ПМД-70 широко используется для контроля сварных соединений в полевых условиях. А передвижной дефектоскоп модели МД-50П чаще всего используется для контроля массивных крупногабаритных сварных соединений по участкам.

Видео: магнитопорошковая дефектоскопия с применением люминисцентных концентратов

Магнитографический метод контроля сварных соединений

Магнитографический контроль — один из двух методов магнитного контроля. Сущность данного метода состоит в намагничивании контролируемой поверхности сварного шва и зоны термического влияния, и одновременном записывании магнитного поля на магнитную ленту. Далее, записанную на ленту информацию считывают с помощью специальных устройств, входящих в состав магнитографического дефектоскопа.

Схема магнитографического контроля показана на рисунке слева. Позиции на рисунке:

1-сварной шов;
2-дефект в сварном шве;
3-магнитная плёнка;
4-намагничивающее устройство;

Технология магнитографического контроля

Метод магнитографического контроля сварного соединения включает в себя следующие технологические операции:

1. Очистка проверяемых поверхностей от шлака, сварочных брызг и других загрязнений
2. Наложение на сварной шов размагниченной магнитной ленты и прижатие её эластичной резиновой лентой
3. Намагничивание контролируемого соединения. Намагничивание производится при оптимальных режимах, которые зависят от типа намагничивающего прибора, толщины контролируемого металла, и его магнитных свойств.
4. Расшифровка результатов дефектоскопии. Для расшифровки результатов магнитную ленту, на которую записывалось магнитное поле, помещают в считывающее устройство дефектоскопа и по сигналам на его экранах обнаруживают дефекты.

Магнитографический метод контроля применяют, в большинстве случаем, для проверки стыковых сварных швов, выполненных сваркой плавлением. Чаще всего такой контроль применяют при дефектоскопии сварных соединений магистральных трубопроводов. Максимально возможная толщина металла, которую можно контролировать данным методом, составляет 20-25мм.

Эффективность магнитографического контроля

Эффективность по выявлению дефектов у магнитографического контроля примерно такая же, как и магнитнопорошкового. Факторами, влияющими на эффективность метода, являются величина и форма сварных дефектов, а также их пространственная ориентация и глубина расположения. Влияет также считывающая способность головки дефектоскопа и записывающая способность магнитной ленты.

Магнитографическим контролем хорошо обнаруживаются плоскостные сварные дефекты (это различные трещины в металле, непровары и несплавления), а также различные цепочки неметаллических включений и шлака. Лучше всего выявляются дефекты, расположенные перпендикулярно движению магнитного потока, а хуже всего обнаруживаются те, которые имеют сферическую форму — поры, раковины и др.

Опытным путём было выяснено, что магнитографический метод контроля с очень высокой долей вероятности позволяет выявить плоскостные дефекты в том случае, если их вертикальный размер равен 8% и более от толщины сварного соединения.

На эффективность этого метода контроля существенное влияние оказывает высота сварного шва, его форма и качество поверхности. Если усиление шва удалить, то чувствительность магнитографии к вышеназванным дефектам достигает 5%. Дефекты сферической формы выявить значительно сложнее. Они выявляются в том случае, если их высота составляет 20% или более от толщины соединения.

Высокая производительность магнитографического контроля является главным его преимуществом перед магнитопорошковой дефектоскопией. Запись на магнитную ленту происходит без какой-либо подготовки, а время её считывания и воспроизведения незначительно.

Магнитографический дефектоскоп и магнитная лента

Регистратором магнитных полей при магнитографическом контроле служит специальная магнитная лента. Основой для изготовления магнитной ленты служит лавсан или триацетат с нанесёнными на них мельчайшими ферромагнитными частицами. Существуют разные типы магнитных лент, которые различаются по своим физико-механическим свойствам и могут применяться при разном температурном интервале.

Расшифровка записей, сделанных на магнитных лентах, происходит с помощью магнитографических дефектоскопов. Они различаются по способу индикации, и в зависимости от этого, делятся на дефектоскопы с импульсной и телевизионной индикацией (видеоиндикацией).

У дефектоскопа с импульсной индикацией на экране электронно-лучевой трубки отображаются импульсы. Они имеют разную амплитуду, и её величина характеризует размер дефекта в вертикальном направлении.

У дефектоскопов с видеоиндикацией магнитный рельеф полей рассеяния отображается на мониторе в виде обычной магнитограммы отдельных участков сварного соединения. Процесс отображения происходит аналогично изображению в телевизоре, отсюда данный метод индикации и получил название «телевизионного».

На практике применяются такие дефектоскопы, как МД-9, имеющие импульсный метод индикации и МД-11 с телевизионным изображением. Существуют также типы дефектоскопов, с двойной индикацией. Это наиболее совершенные приборы таких моделей как МДУ-2У, МД-10ИМ, МГК-1.

Индукционный метод контроля

В отличие от магнитопорошкового и магнитографического методов, которые основаны на обычном выявлении рассеянных магнитных потоков в зоне дефектов, индукционный метод основан на использовании рассеянных магнитных потоков с помощью специальных индукционных катушек.

Читайте также  Что такое рабочий цикл сварочного инвертора?

В индукционных дефектоскопах для поисков дефектов предусмотрены катушки, которые одеваются на сварное соединение или размещаются на его поверхности. При этом индукционная катушка соединяется с каким-либо регистрирующим прибором (телефоном, сигнальной лампой или гальванометром).

Сварное соединение намагничивают и катушки перемещают вдоль него. В некоторых случаях наоборот, проверяемое изделие протаскивают сквозь катушки. Когда катушка будет пересекать участок с дефектом, то в её витках, из-за изменения магнитного потока на этом участке, возникает электродвижущая сила индукции. Возникающий индукционный ток из катушки подаётся на регистрирующий прибор напрямую или через усилитель. По звуку, зажиганию сигнальной лампы или отклонению стрелки гальванометра определяют, что в этом месте находится дефект.

Недостатком индукционного метода контроля является его очень низкая чувствительность к мельчайшим дефектам, расположенным на поверхности.

Магнитопорошковая дефектоскопия сварных швов

Самым первым методом контроля качества сварных соединений было простейшее сравнение готового шва с так называемым эталоном. Профессионалы варили, по их мнению, качественный шов, который и называли эталонным. С ним в последствии сравнивали все остальные швы. С тех пор технологии шагнули вперед и появились более совершенные методы контроля.

Современные методы контроля качества предполагают использование приборов, которые позволяют обнаружить скрытые от глаз дефекты. Один из таких приборов — дефектоскоп для проверки сварных швов. При этом дефектоскоп может применяться при самых различных методах контроля: от радиографического до акустического. В этой статье мы расскажем, что такое магнитопорошковая дефектоскопия сварных швов и каковы особенности данного метода контроля качества.

Общая информация

Магнитопорошковая дефектоскопия сварных соединений (она же магнитно-порошковая дефектоскопия) — метод контроля качества, суть которого заключается в обнаружении магнитных полей вокруг дефекта с применением ферримагнитных веществ.

Если у детали есть какой-либо дефект, то над ним обязательно образуется магнитное поле, которое будет искажаться. Деталь изначально намагничена и магнитные линии просто огибают дефекты, встречающиеся на пути. В результате происходит искажение магнитного поля. К тому же, по краям заготовки могут образовываться магнитные полюсы, которые в свою очередь создают локальные магнитный поля. На рисунке ниже схематично изображено магнитное поле.

Вся информация об изменении магнитного поля фиксируется с помощью дефектоскопа. Чем дефект больше, тем больше рассеивание, а значит и вероятность обнаружения дефекта. А если магнитные линии располагаются под прямым углом относительно дефекта, то вероятность его обнаружения повышается.

Технология

Теперь подробнее о том, как происходит магнитопорошковая дефектоскопия сварных швов. Чтобы обнаружить дефект недостаточно иметь правильное оборудование. Нужно также использовать специальное ферримагнитное вещество. Проще говоря, магнитный порошок. Его наносят на сварное соединение с помощью сухого или мокрого метода.

При сухом методе используется обычное порошкообразное магнитное вещество. А при мокром — специальная магнитная суспензия. В данном случае суспензия — это смесь магнитного порошка и жидкости. В качестве жидкости можно использовать трансформаторное масло, его смесь с керосином, а также смесь воды с веществами, препятствующими образованию коррозии.

Нельзя однозначно сказать, какой метод лучше: сухой или мокрый. В разных ситуациях приходится выбирать разные методы, а порой и вовсе комбинировать их между собой. В любом случае, вы сможете обнаружить даже мелкие дефекты, вне зависимости от того, какое магнитное вещество будете использовать. При применении порошка или суспензии вещество просто «собирается» вокруг дефекта, образуя замысловатые рисунки, если дефектов много. Таким образом удается точно определить не только местоположение, но и размер дефекта.

Пару слов об оборудовании. Оно может быть самым разнообразным: производители предлагают компактные бюджетные модели с минимумов функций, но вы также можете купить высокотехнологичные приборы с жидкокристаллическим дисплеем и множеством настроек. Обычно дефектоскоп приобретают исходя из сферы его применения. Если контроль качества будет проводиться на выездном объекте, то важнее компактность, нежели большой функционал. А если контроль будет проводиться стационарно в цеху, то размер прибора не играет никакой роли. В таких случаях можно сделать ставку на функционал и приобрести более технологичное устройство.

Особенности

Магнитопорошковый контроль, как и любой другой метод контроля сварных швов, имеет свои особенности, которые нужно знать и учитывать. Так главная особенность — это невозможность проведения контроля, если деталь изготовлена не из ферримагнитных металлов. Это нужно учитывать, если вы собираетесь проводить контроль деталей из цинка или меди. Ведь такие металлы являются диамагнетиками, а значит вы просто не сможете провести качественный контроль.

Также нужно учитывать, что у данного метода контроля есть так называемый параметр чувствительности. Т.е., степень того, насколько точно будет выявлен дефект. И чувствительность зависит от многих факторов. На чувствительность влияют магнитные характеристики металла, напряженность магнитного поля, количество дефектов, их размер. Также влияет размер самой детали и ее форма. В некоторых случаях на чувствительность влияет выбранный метод нанесения ферримагнитного вещества (сухой или мокрый). Все это нужно учитывать, чтобы понять, насколько качественно пройдет контроль.

Также учтите, что с помощью магнитно-порошкового метода можно обнаружить не все дефекты. Например, вы не сможете обнаружить дефект, глубина которого менее 0,01 миллиметра. Зато вы без проблем обнаружите большие внутренние дефекты, располагающиеся на глубине более 2 миллиметров. Словом, магнитопорошковая дефектоскопия сварных швов не может использоваться как полноценный метод контроля качества, заменяющий все остальные методы. Магнитопорошковую дефектоскопию нужно использовать в связке с другими способами контроля, чтобы получить объективную картину.

Уровни чувствительности

Выше мы упомянули чувствительность. Давайте подробнее остановимся на этой теме, поскольку понимание всей сути позволит вам лучше разобраться в теме.

Итак, согласно ГОСТу №21105-87 мы знаем, что существует всего три уровня чувствительности. Каждому уровню соответствует своя буква (уровень А, Б, В) и все они зависят от размеров дефектов.

Уровень А самый высокий, чувствительность большая. Есть возможность обнаружить дефекты размером от 2,5 микрометра. Ниже вы можете видеть более подробную таблицу с информацией о других уровнях чувствительности.

Вы можете видеть, что в таблице указана графа о максимально допустимой шероховатости. Все дело в том, что магнитопорошковая дефектоскопия сварных соединений и успешность ее проведения во многом зависят именно от параметра шероховатости поверхности детали. Есть шероховатость будет превышать допустимые значения, контроль будет менее объективным и точным. Но эту проблему можно частично исправить, если использовать порошок крупной фракции. Его нужно наносить сухим способом. Тогда появится возможность обнаружить глубокие дефекты при повышенной шероховатости поверхности детали.

Выше мы указывали, от чего зависит чувствительность данного метода контроля. Но мы не упомянули, что большое влияние оказывает подвижность частиц магнитного порошка. Важно, чтобы подвижность была высокой или выше среднего. Чтобы этого добиться нужно применять порошок с частицами разной формы. Такой порошок не будет прилипать к детали и позволит проводить более качественный контроль.

Также на чувствительность может влиять род тока, с помощью которого вы намагничиваете деталь при контроле. Мы рекомендуем устанавливать постоянный ток. Он формирует магнитное поле, способное проникать вглубь заготовки, а значит лучше обнаруживать дефекты. На изображении ниже более подробно изображен этот принцип.

Отдельно поговорим о применении сухого и мокрого метода. В своей практике мы обнаружили, что при сухом методе чувствительность существенно повышается. Это значит, что при применении сухого порошка контроль более объективен, чем при использовании суспензии. Кстати, есть свои секреты, как можно повысить чувствительность при применении сухого порошка. Профессионалы рекомендуют распылять порошок в специальном устройстве, которое затем будет подать вещество по шлангу прямо на сварное соединение.

Есть и более продвинутые способы нанесения порошка. Можно поместить деталь в специальную герметичную камеру, где порошок будет находиться во взвешенном состоянии. В таком случае саму деталь нужно погрузить в рыхлое вещество, после чего медленно и аккуратно извлечь. Чувствительность при этом будет очень высокой. Но, в силу трудоемкости этот метод применяется нечасто, хотя все же имеет право на жизнь. Особенно, если нужно провести контроль детали, изготовленной из металла, имеющего немагнитное покрытие.

Вместо заключения

Дефектоскоп — прибор, который можно применять в связке с многими методами контроля. Существует цветная дефектоскопия сварных швов, акустическая, вихретоковая, термоэлектрическая и многие другие. Но среди них всех особняком стоит магнитно-порошковая дефектоскопия, поскольку это мобильный и простой в применении метод.

С помощью магнитного дефектоскопа можно провести контроль в труднодоступных местах (в том числе на внутренней стороне детали, например, трубы), можно проводить контроль на высоте, поскольку оборудование очень компактное и легкое. Словом, преимуществ много. А вы когда-нибудь сталкивались с магнитно-порошковой дефектоскопией? Расскажите о своем опыте в комментариях. Желаем удачи в работе!

Магнитопорошковая дефектоскопия сварных соединений

Среди неразрушающих методов проверки надежности сварных соединений магнитопорошковый контроль занимает лидирующие позиции. Это связано с тем, что магнитопорошковая дефектоскопия не требует дорогого и сложного оборудования, для работы с которым требуется серьезная подготовка. Этот метод контроля обнаруживает поверхностные и скрытые от глаз дефекты. С помощью дефектоскопа проводят оценку состояния швов в труднодоступных местах, на высоте. Распространенность магнитопорошкового контроля соединений, образованных сваркой, объясняется наглядностью результатов. У дефектоскопов высокая степень выявления дефектов, снижающих прочность опорных металлоконструкций, сосудов высокого давления, технологических емкостей, трубопроводов.

Читайте также  Лазерная сварка своими руками

Определение и особенности метода

Зная школьный курс физики, несложно представить сущность определения дефектов. Все материалы делятся на две группы: проводящие электроны и диэлектрики. Принцип магнитопорошкового метода неразрушающего контроля основан на искажении рисунка магнитных линий вокруг несплошностей, возникающих при сварке. Если в диффузном слое или зоне термического влияния образуются свищи, трещины, силовые линии меняют направление, огибают препятствия.

На участках с дефектами линии образуют пик, выходящий за пределы детали. Если на местах искажения присутствуют мелкие частицы ферромагнитных материалов, они изменят пространственное положение, сориентируются по направлению силовых линий магнитного поля.

Чем больше неоднородность поля над дефектом, тем сильнее возникающая электромагнитная сила, перемещающая намагниченные частицы. В области дефекта образуются цепочки частиц. Только если несплошность расположена под прямым углом к направлению поля, она не будет видна по положению частиц.

Технология проведения магнитопорошкового контроля

Последовательность операций для всех сварных соединений одинаковая. Магнитопорошковый метод регламентирован стандартом. Последовательность действий:

  1. Подготовка поверхности заключается в очистке шва и зоны термического влияния от окалины, следов ржавчины, загрязнений, следов смазочных материалов. Для четкости контрольного рисунка темные металлы покрывают белой водоэмульсионной краской, слой делают тонким.
  2. Для проведения магнитно порошковой дефектоскопии заготовки намагничивают (способы указаны в отдельном разделе). От намагничивания в дефектоскопии зависит чувствительность контроля.
  3. Индикатор с ферромагнитными частицами наносится способом, зависящим от типа приборов для дефектоскопии.
  4. Осмотр контролируемой области при необходимости проводится с применением оптики и устройств, предусмотренных нормативами.
  5. Расшифровка индикаторного рисунка, полученного при магнитопорошковой дефектоскопии, проводится с фиксацией дефектов после неизменного положения индикаторных частиц. Контролер расшифровывает рисунок, сопоставляя его со снимками из атласа дефектов. Данные заносятся в журнал.
  6. Размагничивание – финишная операция. На детали воздействуют магнитным полем с затухающей амплитудой или нагревают до точки Кюри. Обязательно при дефектоскопии проводится контроль размагниченности.
  7. Остатки магнитопорошкового индикатора удаляют вручную или с использованием протирочных составов.

Способы нанесения индикатора

Для магнитно порошкового контроля применяют сухие, влажные, пастообразные индикаторы. Сухой представляет собой смесь металлических опилок мелких фракций, он наносится на поверхность в естественном состоянии, без добавления жидкостей.

Сухой метод дефектоскопии эффективен для обнаружения несплошностей, шлаковых включений на поверхности или дефектов подповерхностного типа. Для изготовления магнитопорошковых индикаторов применяют железную окалину, баббит, магнетит, другие хорошо намагничивающиеся материалы. Поле в сварной заготовке создается П-образным электромагнитом, подключенным к источнику постоянного или переменного тока силой от 300 до 600 ампер. Ферромагнитная смесь наносится из аэрозольной упаковки, рассеивается ситом, направляется грушей.

В мокрых индикаторах намагничивающиеся частички пребывают во взвешенном состоянии. Их добавляют:

  • в воду с антикоррозионными веществами;
  • раствор жидкого мыла;
  • керосин;
  • трансформаторное масло;
  • специальный концентрат на основе полимеров.

Для дефектоскопии наносят составы несколькими методами:

  • с помощью кисти;
  • погружая в суспензию;
  • поливая жидкостью исследуемую поверхность.

Мокрый способ дефектоскопии применяется для выявления поверхностных несплошностей сварных швов.

Виды намагничивания

При магнитопорошковом методе контроля чаще пользуются видами намагничивания, применимыми к деталям простой формы:

  • циркулярный создает равномерное магнитное поле внутри детали, на концах нет магнитных полюсов;
  • продольный называют полюсным: на одном из концов заготовки образуется плюс, на другом минус, поле направлено вдоль детали;
  • комбинированный предусматривает одновременное воздействие нескольких разнонаправленных магнитных полей (в двух взаимно перпендикулярных направлениях, трех и более).

На производстве используется вид намагничивания сварных швов во вращающемся магнитном поле.

Для намагничивания применяются различные типы электротоков:

  • постоянный создает равномерную индукцию;
  • переменный применим для менее чувствительных методов контроля;
  • импульсный по характеристикам близок к постоянному.

В приборы для дефектоскопии встраивают генераторы однопериодного и выпрямленного тока.

Чувствительность магнитопорошковой дефектоскопии

Дефектоскопия проводится на материалах с относительной магнитной проницаемостью не ниже 40, чувствительность МПД зависит:

  • от электромагнитных свойств материала, используемого для исследований (мобильность индикаторных частиц);
  • магнитных характеристик заготовок (способности намагничиваться);
  • рода тока, при постоянном формируется стабильное магнитное поле
  • гладкости поверхности детали, шероховатость градируется от 2,5 до 40 микрон, чем ниже шероховатость, тем точнее контроль;
  • напряженности намагничивающего поля;
  • положения несплошностей и других дефектов относительно индукционных линий;
  • способа нанесения индикатора на поверхность детали;
  • условий проведения испытаний (выше точность у «сухого» метода контроля сварных соединений);
  • метод регистрации индикаторного рисунка над дефектами.

По стандарту существует 3 вида чувствительности:

  • А – ширина обнаруживаемых дефектов от 2,5 микрон, глубина залегания 25 мкм;
  • Б – 10 и 100 соответственно;
  • В – 25 и 250 микрон.

Минимальная протяженность дефекта для всех уровней чувствительности магнитопорошкового контроля – 0,5 мм.

Оборудование и материалы

Сварной шов проверяют дефектоскопом или портативными намагничивающими устройствами, создающими индукционное поле. Выделяют автоматизированные системы контроля, используемые для выявления дефектов. В них магнитопорошковый дефектоскоп – лишь один из модулей сложного оборудования. Шлак, пустоты, дефекты распознает специальная операционная система. При осмотре мест контроля применяются всевозможные приспособления: лупы, фонарики, эндоскопы и другие.

Магнитопорошковый метод контроля обнаруживает поверхностные и скрытые от глаз дефекты. С помощью дефектоскопа проводят оценку состояния швов в труднодоступных местах, на высоте.

Для измерения магнитных полей напряженности, индукции необходимы измерительные приборы: магнитометры, гауссметры и другие. Требуется хорошая освещенность, чтобы рисунок был виден четко. Для калибровки и настройки приборов для дефектоскопии потребуются контрольные образцы.

При выборе моделей для контроля сварочных швов учитывают:

  • электромагнитные характеристики оборудвоания;
  • плавность регулировки ручек настройки;
  • универсальность (поддержку способов СОН и/или СПП).

К расходным материалам магнитопорошковых приборов относятся:

  • магнитные индикаторные полоски;
  • индикаторные сухие материалы (чувствительность порошков выше, чем у вязких индикаторов, но пользоваться ими получается не всегда);
  • вязкие составы в виде суспензий наносят на труднодоступные участки, где сложно равномерно рассеять сухие смеси.

Химический состав магнитных порошков для дефектоскопии, индикаторных жидкостей контролируется на токсичность, он не должен содержать опасных реагентов. Намагничивающиеся частички бывают:

  • естественного черного или коричневого цвета;
  • ярко окрашенными;
  • люминесцентными, дающими контрастный рисунок в ультрафиолетовом излучении.

От вида используемых приборов и расходников во многом зависит объективность оценки состояния швов.

Оборудование очень компактное и легкое, с ним работаю в поле, на стационарных участках. Выявляют большинство дефектов, приводящих к авариям. Преимуществ у магнитопорошковой дефектоскопии много.

«Возможности магнитопорошкового метода неразрушающего контроля»

Идею метода магнитопорошковой дефектоскопии приписывают Вильяму Е. Хоку (W. E. Hоkе) и даже называют дату — 1922 г., когда он сделал заявку на патент. Однако до 1929 г. для развития этой идеи ничего почти не было сделано вследствие совершенства имевшейся тогда техники намагничивания и отсутствия подходящих средств испытания. В 1929 г. А. В. Де-Форест пытался применить этот метод для обнаружения продольных дефектов в бурильных трубах, намагничивая их циркулярным полем постоянного тока, но из-за несовершенства порошка (стальные опилки) ему не удалось решить эту задачу. В 1930 г. Т. Р. Уоттс (Т. R. Watts) опубликовал исследование, в котором впервые указал на возможность применения метода для испытания качества сварных швов. В том же году делается первая попытка применить метод в области авиационной промышленности. Вплоть до 1934 г. метод продолжал оставаться во всех странах лабораторной редкостью. Вполне законченные и специально сконструированные промышленные дефектоскопы начинают появляться с 1934 г.

В Советском Союзе первый прибор, работающий по методу магнитной порошковой дефектоскопии, был разработан и изготовлен академиком Н. С. Акуловым в 1934 г. в магнитной лаборатории Научно-исследовательского института физики Московского государственного университета. В 1935 г. в Военно-воздушной академии им. Жуковского автором была разработана первая дефектоскопическая установка, работающая на переменном токе. Эта установка была применена для контроля силовых шпилек мотора на заводе им. Фрунзе.

Магнитопорошковый метод контроля основан на явлении притяжения частиц магнитного порошка в местах выхода на контролируемую поверхность изделия магнитного потока, связанного с наличием нарушения сплошности материала. В намагниченных изделиях нарушения сплошности (дефекты) вызывают перераспределение магнитного потока и выход части его на поверхность (магнитный поток дефекта). На поверхности изделия создаются локальные магнитные полюсы, притягивающие частицы магнитного порошка, в результате чего образуются цепочки намагниченных частиц обозначающие дефектные участки, ориентированные по магнитным силовым линиям поля.

Магнитопорошковый метод предназначен для выявления поверхностных и под поверхностных (на глубине до 1,5 . 2 мм) дефектов типа нарушения сплошности материала изделия: трещины, волосовины, расслоения, не проварка стыковых сварных соединений, закатов и т.д.

Существуют «сухой» и «мокрый» способы нанесения индикатора на контролируемый объект. В первом случае для обнаружения дефектов используют сухой ферромагнитный порошок. При использовании «мокрого» метода контроль осуществляется с помощью магнитной суспензии, т.е. взвеси ферромагнитных частиц в жидких средах: трансформаторном масле, смеси трансформаторного масла с керосином, смеси обыкновенной воды с антикоррозионными веществами и др.

Читайте также  Как правильно варить сваркой?

Процесс магнитопорошкового контроля состоит из 5 этапов:

1 — подготовка изделия к контролю. Изделия, подаваемые на намагничивающие устройства, должны быть очищены от покрытий, мешающих их намагничиванию или смачиванию (отслаивающаяся окалина, масла, грязь, иногда изоляционные покрытия и т. п.).

2 — намагничивание детали. Намагничивание детали является одной из основных операций контроля. От правильного выбора способа, направления и вида намагничивания, а также рода тока во многом зависит чувствительность и возможность обнаружения дефектов.

3 — нанесение на поверхность детали магнитного индикатора (порошка или суспензии). Оптимальный способ нанесения суспензии заключается в окунании детали в бак, в котором суспензия хорошо перемешана, и в медленном удалении из него. Однако этот способ не всегда технологичен. Чаще суспензию наносят с помощью шланга, душа или аэрозольного балона. Напор струи должен быть достаточно слабым, чтобы не смывался магнитный порошок с дефектных мест. При сухом методе контроля эти требования относятся к давлению воздушной струи, с помощью которой магнитный порошок наносят на деталь. Время стекания с детали дисперсной среды, имеющей большую вязкость относительно велико, поэтому производительность труда контролера уменьшается.

4 — контроль. Контроль проводится визуально после стекания с нее основной массы суспензии, когда картина отложений порошка становится неизменной. В сомнительных случаях и для расшифровки характера дефектов применяют оптические приборы, тип и увеличение которых устанавливают по нормативным документам.

5 — размагничивание. Для размагничивания на изделие воздействуют переменным магнитным полем с напряженностью, убывающей от максимального значения до нуля. Изделия, нагреваемые после магнитного контроля до 600…700°С и выше, размагничивать не следует.

Рисунок 1. Выявление трещин магнитопорошковым методом

а — открытой трещины; б — скрытой под слоем хрома толщиной 0,03 мм;

в — скрытой под слоем хрома толщиной 0,1мм

К недостаткам магнитопорошкового контроля следует отнести необходимость удаления защитных лакокрасочных покрытий толщиной свыше 0,03 мм и сложность размагничивания некоторых деталей.

Достоинствами магнитопорошкового контроля являются его относительно небольшая трудоемкость, высокая производительность и возможности обнаружения поверхностных и подповерхностных дефектов. При помощи этого метода выявляются не только полые несплошности, но и дефекты, заполненные инородным веществом. Магнитопорошковый метод может быть применен не только при изготовлении конструкций и деталей, но и в ходе их эксплуатации, например, для выявления усталостных трещин.

С целью повышения качества контроля сварных соединений и снижения вероятности пропуска дефектов в обследованных конструкциях в ГБУ «ЦЭИИС» с 2017 г. вводится магнитопорошковый метод неразрушающего контроля в дополнение к применяемым методам НК.

Автор статьи инженер-эксперт Митин С.В.

Список использованных источников

1. Курс лекций по магнитопорошковому методу неразрушающего контроля, А. Марцинкевич Минск 2010;

2. Неразрушающий контроль и диагностика под редакцией В.В. Клюева. Издательство «Машиностроение», Москва 2003.

Если вы нашли ошибку: выделите текст и нажмите Ctrl+Enter

Неразрушающий контроль качества сварочных соединений с помощью магнитной дефектоскопии, технология выполнения основных магнитных методов

Контроль качества сварочных швов с помощью магнитной дефектоскопии применяется для обнаружения скрытых неглубоких трещин или включений инородного происхождения для изделий с ферромагнитным составом.

Магнитная дефектоскопия: характеристика и применение

Принцип работы данного метода заключается в том, что при намагничивании ферромагнитного металла и сплавов в областях с нарушенной внутренней целостностью появляется зона рассеяния, а на краях дефектов образуются полюса. Происходит фиксация зоны магнитного рассеяния на внешней части детали точно на поверхности той зоны, где внутри образовался дефект. Силовые линии магнитов огибают зону расположения брака и таким образом как бы очерчивают конкретное дефектное место.

Изъяны, что располагаются на глубине до 2 мм, вытесняют силовые импульсы магнитов над поверхностью детали, создавая локальное поле магнитного рассеяния. Это происходит благодаря тому, что:

Существуют дефекты, которые могут вызвать возмущения в распределении линий магнитного потока, не образуя при этом локального рассеяния. Поэтому чем большее препятствие создает сварочный дефект, тем сильнее он вызывает магнитное возмущение. Если место расположения дефекта параллельно направлению электромагнитных силовых линий, то полученное возмущение магнитного потока будет небольшим. Но если тот же самый изъян будет находиться перпендикулярно или под наклоном по отношению к направлению магнитных линий потока, то степень рассеяния потока будет обширной.

С помощью магнитной дефектоскопии есть возможность обнаружения внутренних микротрещин с размером до 0,001 мм ширины.

Виды намагничивания (направления):

  1. Циркуляционный (для обнаружения продольных трещин).
  2. Продольный (для поиска поперечных трещин).
  3. Комбинированный.

Преимущества данного способа контроля:

  • высокая чувствительность и точность обнаружения мест локализации дефектов;
  • быстрая скорость контрольного процесса;
  • доступное оборудование.

Использование магнитного метода контроля сварочных работ возможно только для магнитных металлов.

Виды магнитного неразрушающего контроля и их технологии выполнения

Ключевая причина использования различных методов магнитного контроля – целостность проверяемых изделий. Для контроля качества сварочных соединений используют магнитопорошковый и магнитографический методы, реже применяется метод с помощью индукции.

Магнитопорошковая дефектоскопия

Контроль качества дефектов посредством магнитопорошкового метода базируется на обнаружении локальной зоны магнитного потока рассеяния над поверхностью дефекта с помощью использования ферромагнитного порошка. Возможно использование порошка в сухом виде или в жидком, в составе водной или масляной магнитной суспензии. На зону сварочного соединения наносят порошок с магнитными частицами. Далее на эти частицы порошка начинает воздействовать нелинейная сила поля (пондеромоторная), что стремится притянуть ферромагнитные частицы в область наивысшей сосредоточенности магнитных силовых линий. Вследствие этого железосодержащие частицы образуют своеобразный рисунок на поверхности внутреннего дефекта. Этот контроль можно провести только на гладких, ровных и чистых поверхностях металлов.

Варианты использования ферромагнитного порошка:

  1. На зону сварочного шва наносят ферромагнитный состав специальным распылителем.
  2. Свариваемую деталь полностью опускают в емкость с порошком.

Оба варианта допустимы как для сухого, так и для жидкого видов порошка. Данной техникой могут быть проверены сварочные швы с ферромагнитным составом, имеющие относительную магнитную проницаемость.

Сварочные дефекты, которые поддаются обнаружению магнитопорошковым способом:

  • поверхностные, с шириной от 0,002 мм и глубиной от 0,01 мм и больше;
  • подповерхностные, расположенные до 2 мм глубины;
  • внутренние, глубина более 2 мм (для расслоений или трещин с большим размером);
  • брак под немагнитным покрытием с учетом того, что толщина покрытия составляет не больше 0,25 мм.

  1. Намагничивающее устройство.
  2. Ферромагнитный порошок или магнитопорошковая суспензия.
  3. Распылитель.
  4. Дефектоскоп.
  5. Тестовые образцы с браком.
  6. Размагничивающая установка.

Примерная стоимость магнитного дефектоскопа на Яндекс.маркет

Следует отметить, что для поиска подповерхностных дефектов использование порошка в сухом виде позволяет достигнуть лучших результатов по сравнению с «мокрым» видом. Это обусловлено его более высокой степенью чувствительности. Для оценки чувствительности самого порошка используются контрольные образцы деталей с разной степенью дефектов.

Магнитографический метод поиска брака

Магнитографический метод для осуществления контроля сварочных работ базируется на поиске магнитного поля рассеяния, что возникает в зоне дефекта при намагничивании детали. Из-за образовавшихся трещин или раковин место рассеяния остается зафиксированным, как отпечаток магнитных возмущений на эластичной ленте дефектоскопа. Дефектоскоп обязательно должен плотно прилегать к сварочному соединению. На магнитной ленте частицы ферромагнитного порошка остаются неподвижными, таким образом обозначая зону локализации взаимодействия магнитного характера с дефектным полем.

Магнитографический метод используется для контроля сварочных швов с толщиной до 12 мм. Данным методом возможно обнаружить так называемые макротрещины, газовую пористость, включения из шлака, сварочные непровары.

Последовательность действий контроля:

Настройка дефектоскопов осуществляется по эталонным лентам, зафиксированным на тестовых образцах сварных швов. Место локализации дефекта и его внутренняя глубина определяются на экране-индикаторе. Форма полученного рисунка будет соответствовать области локализации дефекта, глубина расположения трещины отображается насыщенностью почернения на экране.

Магнитографическим методом лучше всего обнаруживаются дефекты плоскостного типа, такие, как трещины, несплавления металлов, сварочные непровары с максимальной глубиной залегания до 20-25 мм.

  • намагничивающее устройство;
  • дефектоскопы для работы с ферромагнитной лентой;
  • переносная станция питания;
  • магнитная лента на триацетатной или лавсановой основе;
  • контрольные образцы сварочных швов;
  • размагничивающая техника.

Индукционный метод

Технология индукционного метода обнаружения изъянов основывается на физическом законе электромагнитной индукции. Принцип работы данной технологии – формирование электродвижущей силы с использованием индукционных катушек. Для того чтобы зафиксировать сигнал, катушку соединяют с регистрирующим аппаратом (например, с гальванометром или сигнальной лампой).

Процесс поиска дефектов представляет собой перемещение контролируемой детали относительно индукционной катушки. Это осуществляется либо физическим перемещением сварного объекта, либо передвижением индукционного дефектометра. Зона с образовавшимся дефектом вызывает электродвижущую силу индукции из-за изменения магнитных линий.

Индукционная технология подходит для выявления внутренних видов брака, но при этом имеет достаточно низкую способность для обнаружения поверхностных дефектов. Поэтому данный метод следует дополнять другими доступными способами контроля.

  • индукционный дефектоскоп;
  • гальванометр;
  • толщиномер покрытий.
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: