Какие свойства определяют при испытании сварных соединений?

Испытание материалов и сварных соединений

Механические свойства характеризуют сопротивление металла деформации и разрушению под действием механических сил (нагрузки).

К основным механическим свойствам относят:

— прочность
— пластичность
— ударную вязкость
— твердость

Прочность – это способность металла не разрушаться под действием механических сил (нагрузки).

Пластичность – это способность металла изменять форму (деформироваться) под действием механических сил (нагрузки) без разрушения.

Ударная вязкость определяет способность металла противостоять ударным (динамическим) механическим силам (ударным нагрузкам).

Твердость – это способность металла сопротивляться проникновению в него других более твердых материалов.

Виды и условия механических испытаний металлов

Для определения механических свойств выполняют следующие виды испытаний:

— испытания на растяжение;
— испытания на статический изгиб;
— испытания на ударный изгиб;
— измерение твердости.

К условиям испытаний образцов относятся: температура, вид и характер приложения нагрузки к образцам.

Температура проведения испытаний:

— нормальная (+20°С);
— низкая (ниже +20°С, температура 0. -60°С);
— высокая (выше+20°С, температура +100. +1200°С).

Вид нагрузок:

растяжение
сжатие
изгиб
кручение
срез

Характер приложения нагрузки:

— нагрузка возрастает медленно и плавно или остаётся постоянной — статические испытания;
— нагрузка прилагается с большими скоростями; нагрузка ударная — динамические испытания;
— нагрузка многократная повторно-переменная; нагрузка изменяется по величине или по величине и направлению (растяжение и сжатие) — испытания на выносливость.

Образцы для механических испытаний

Механические испытания выполняют на стандартных образцах. Форма и размеры образцов устанавливаются в зависимости от вида испытаний.

Для механических испытаний на растяжение используют стандартные цилиндрические (круглого сечения) и плоские (прямоугольного сечения) образцы. Для цилиндрических образцов в качестве основных приняты образцы диаметром dо=10 мм короткий lо=5×do = 50 мм и длинный lо=10×do = 100 мм.

Короткий круглый образец

Длинный круглый образец

Плоские образцы имеют толщину равную толщине листа, а ширина устанавливается равной 10, 15, 20 или 30 мм.

Плоский образец без головок для захватов разрывной машины

Плоский образец с головками

Механические свойства, определяемые при статических испытаниях

Статическими называют испытания, при которых прилагаемая нагрузка к образцу возрастает медленно и плавно.

При статических испытаниях на растяжение определяются следующие основные механические характеристики металла:

— предел текучести (σ т);
— предел прочности или временное сопротивление (σ в);
— относительное удлинение (δ);
— относительное сужение (ψ).

Предел текучести – это напряжение, при котором образец деформируется без заметного увеличения растягивающей нагрузки.

Предел прочности – это напряжение при максимальной нагрузке, предшествующей разрушению образца.

Относительное удлинение – это отношение приращения длины образца после разрушения к его начальной длине до испытания.

Относительное сужение – это отношение уменьшения площади поперечного сечения образца после разрушения к его начальной площади до испытания.

При испытании на статическое растяжение железо и другие пластические металлы имеют площадку текучести, когда образец удлиняется при постоянной нагрузке Рm.

При максимальной нагрузке Рmax в одном участке образца появляется сужение поперечного сечения, так называемая “шейка”. В шейке начинается разрушение образца. Так как сечение образца уменьшается, то разрушение образца происходит при нагрузке меньше максимальной. В процессе испытания приборы рисуют диаграмму растяжения, по которой определяют нагрузки. После испытания разрушенные образцы складывают вместе и измеряют конечную длину и диаметр шейки. По этим данным рассчитывают прочность и пластичность.

Механические испытания на ударный изгиб

Динамическими называют испытания, при которых скорость деформирования значительно выше, чем при статических испытаниях.

Динамические испытания на ударный изгиб выявляют склонность металла к хрупкому разрушению. Метод основан на разрушении образца с надрезом (концентратором напряжений) одним ударом маятникового копра.

Стандарт предусматривает образцы с надрезами трех видов:

образец U – образный с радиусом R = 1 мм (метод KCU);

образец V – образный с радиусом R = 0.25 мм (метод KCV);

образец I – образный с усталостной трещиной (метод КСТ).

Под ударной вязкостью понимают работу удара, отнесенную к начальной площади поперечного сечения образца в месте концентратора.

После испытания по шкале маятникового копра определяют работу удара, которую затрачивают на разрушение образца. Площадь сечения образца определяют до разрушения.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ

Твердостью называется свойство металла оказывать сопротивление пластической деформации в поверхностном слое при вдавливании шарика, конуса или пирамиды. Измерение твердости отличается простотой и быстротой осуществления и выполняется без разрушения изделия. Широкое применение нашли три метода определения твердости:

— твердость по Бринеллю (единица твердости обозначается HB);
— твердость по Роквеллу (единица твердости обозначается HR);
— твердость по Виккерсу (единица твердости обозначается HV).

Определение твердости по Бринеллю заключается во вдавливании стального шарика диаметром D = 10 мм в образец (изделие) под действием нагрузки и в измерении диаметра отпечатка d после снятия нагрузки.

Твердость по Бринеллю обозначают цифрами и буквами НВ, например, 180 НВ. Чем меньше диаметр отпечатка, тем выше твердость. Чем выше твердость, тем больше прочность металла и меньше пластичность. Чем мягче металл, тем меньше устанавливают нагрузку на приборе. Так при определении твердости стали и чугуна нагрузку принимают 3000 Н, никеля, меди и алюминия – 1000 Н, свинца и олова – 250 Н.

Определение твердости по Роквеллу заключается во вдавливании наконечника с алмазным конусом (шкалы А и С) или стального шарика диаметром 1.6 мм (шкала В) в испытуемый образец (изделие) под действием последовательно прилагаемых предварительной (Ро )и основной (Р) нагрузок и в измерении глубины внедрения наконечника (h). Твердость по Роквеллу обозначается цифрами и буквами HR с указание шкалы. Например, 60 HRC (твердость 60 по шкале С).

Определение твердости по Виккерсу заключается во вдавливании алмазного наконечника, имеющего форму правильной четырехгранной пирамиды, в образец (изделие) под действием нагрузки и в измерении диагонали отпечатка d, оставшегося после снятия нагрузки. Метод используется для определения твердости деталей малой толщины и тонких поверхностных слоёв с высокой твердостью. Твердость по Виккерсу обозначается цифрами и буквами HV, например, 200 HV.

Испытания на статический изгиб

Технологические испытания на статический изгиб служит для определения способности металла воспринимать заданный по форме и размерам загиб. Аналогичные испытания проводят и на сварных соединениях.

Испытанию на загиб подвергают образцы из листового и фасонного (пруток, квадрат, уголок, швеллер и др.) металла. Для листового металла ширина образца (b) принимается равной двойной толщине(2•t), но не менее 10 мм. Радиус оправки указывается в технических условиях.

Различают три вида изгиба:

— загиб до определенного угла;
— загиб вокруг оправки до параллельности сторон;
— загиб вплотную до соприкосновения сторон (сплющивание).

Отсутствие в образце трещин, надрывов, расслоений или излома является признаком того, что образец выдержал испытание.

Свойства сварного соединения

Автор: Игорь

Дата: 20.01.2018

  • Статья
  • Фото
  • Видео

Все физические характеристики, для определения свойства соединения сварочных швов, определяются как комплексные механические свойства сварного соединения. Все эти параметры зависят от расчётного соотношения механических свойств металлической поверхности шва, а также обрабатываемой зоны металла и термических характеристик структуры металлического изделия. Если мы будем исходить из принципа понятия свойства металла сварного соединения, то швы и прочие соединения должны быть максимально приближены к структуре металла. Сварное соединение может считаться доброкачественным, только в том случае, если есть обеспечение величины прочности по параметрам предельности, а также по пределам текучести не меньше тех заданных свойств, которые характерны для достаточного запаса пластичности.

Правильный сварочный шов на изделии

Факторы, влияющие на характеристики прочности сварного соединения

Существует ряд технических особенностей, а также физических параметров, которые так или иначе завязаны на равнопрочности сварного соединения.

  • Определение текущего сварочного материала для процессе- электроды, флюсы, проволоки.
  • Естественные химические данные материала соединения.
  • Определение реального режима сварки.
  • Выбор методики проведения работ по пайке или резке металла.
  • Размерные данные материалы (в основном толщина).
  • Скорость охлаждения материала.
  • Возможная величина деформации в пластических характеристиках шва.

Именно этот регламент указывает на физические и технические параметры свойств металла, а также на их подгруппы. Этот момент необходимо учитывать для того, чтобы была возможность определить фактические свойства металла при переходе от легированного типа к нелегированному металлу, а также в обратном направлении.

что основные моменты на определение механических свойств сварных соединений зафиксированы в действующем регламентом положении ГОСТ 9467-60.»

Точно также сварные соединения методы определения механических свойств характерны для операций с использованием флюса и прочих технологий – ручная, дуговая, электродуговая автоматическая, полуавтоматическая.

Механические параметры испытаний

Единым регламентом, определяющий правила свойства сварного шва при однородном растяжении является ГОСТ 6996, в котором отмечены следующие факторы определения свойств:

  • Испытание статистическим или кратковременным растяжением.
  • Испытание на ударный вид образца, только для надрезанных образцов.
  • Стойкость при условии воздействия механизма старения механического способа.
  • Определение твёрдости для наплавленного участка, а также для сварного соединения.
  • Полное статическое напряжение с выдержанным параметром времени.
  • Испытание на статический способ загиба или изгиба.
  • Испытание полученного соединения на ударный разрыв.
Читайте также  Ручной инструмент для монтажа pex труб

В некоторых случаях методы исследования свойств сварных соединений определяются дополнительными способами, но при этом общая рекомендация заключается в использовании только проверенных методов по ГОСТ.

Обзор методов для определения свойств сварных швов

Самыми простейшими и доступными методами проверки качества, являются определение допуска чешуйчатости сварного шва по параметру временного сопротивления, данным фактической текучести изделия, относительным характеристикам удлинения, свойствам поперечного сужения. В качестве образцов используют цилиндрические формы металлов, применяемые для статического растяжения в соответствии с 4, 2 видом испытаний.

Чешуйчатость сварного шва

Самой простейшей и распространённой формой определения задачи, какие свойства определяют при испытании сварных соединений, является временное сопротивление. В качестве опытных образцов можно взять детали, частички металла, которые расположены в шовной или околошовной частях. Таким образом, можно определить однородность структуры металла. Но, для маленьких образцов лучше всего использовать другие методы, так как порою сложно понять, дальнейшие конструкционные свойства изделия. Временное сопротивление лучше всего использовать для больших и объёмных образцов.

Предел текучести может быть не определён для некоторых материалов, так явная неоднородность изделий и сварных швов, может преподнести искажённые данные. Текучесть, для того, чтобы решить вопрос, чем определяются свойства сварного соединения, используют только для однородной структуры металлического образца. Перед тем, как определение проходит фактическую стадию, рекомендуется подробно ознакомиться с положениями регламента.

В качестве экономии расхода затрат на операцию как влияют окислы в сварном шве на свойства сварного соединения, лучшей методикой признано определение твёрдости. Распределение окислов происходит корреляционным методом, который эффектов указывает зональность параметров твёрдого состояния сварного соединения.

Метод определения твёрдости также позволяет узнать дополнительные сведения о твёрдости всего состояния металла.»

Для оценки пластичности шва, используют метод статичности, точнее определение состояния на изгиб или загиб. В данном случае осуществляется изгиб, где до первого сопряжения появляется трещина, по которой можно определить технические характеристики шва и состояния металла в целом. Если трещина имеет показатели, не превышающие 20% общих фактических параметров состояния зоны, но не более 5 мм на любой площади, то такая пластичность не является критичной для металла по сварному шву. Все испытания осуществляются ровно до того состояния, который регулирует угол изгиба. То есть, изгиб или загиб осуществляются в любом случае до появления первой трещины и анализ НТД показывает общие параметры пластичности металлической конструкции.

Общие сведения по сварным соединениям

Как известно каждая группа металлов имеет свои параметры, которые отличаются по физическим, механическим и химическим данным. Для определения естественных критериев свариваемости, ориентируются на следующие показатели:

  • Каким образом возникает чувствительность металла при проведении сварочных работ.
  • Какую склонность к росту зерна имеет металл, при этом сохраняются как пластические, так и прочностные характеристики металла, в зоне термического обслуживания.
  • Химическая природа и структура металла, которая зависит от теплового эффекта и прочих данных обработки металлической поверхности.
  • Параметры сопротивляемости металла.

Это основные показатели, которые используют специалисты при расчётах.

Классификация стали по свариваемости

Марка стали углеродистая

Марка стали – конструкционная

В табличной части указана «хорошая» группа стали, при этом содержание углерода должно быть меньше, чем 0,25%. Такие стали прекрасно свариваются без образования закалочной группы металла, как это принято для других подгрупп. Отсутствуют трещины, которые характерны для других подгрупп в широком диапазоне измерения.»

Испытания сварных соединений

Содержание:

  1. Главные этапы
  2. Способы проверки
  3. Особенности визуального осмотра
  4. Особенности капиллярного метода
  5. Интересное видео

Сварочная технология должна проводиться правильно и с соблюдением необходимых требований, от которых зависит качество и прочность сварного шва. Независимо от типа свариваемого материала (металл, пластик, стекло) обязательно должны выполняться испытания сварных соединений. Если будет отмечаться хоть небольшое несоответствие заданным характеристикам швов, то это может привести к быстрому разрушению конструкций и изделий. По этой причине после работ обязательно должен проводиться контроль качества соединений.

Главные этапы

Испытание на прочность сварных швов требуется для того, чтобы удостовериться в высоком качестве швов. Это в дальнейшем сможет уберечь от разрушения конструкций ответственного значения. Благодаря данным манипуляциям подтверждается пригодность изделия к дальнейшему использованию.

Испытания состоят из основных этапов:

  • сначала проверяется наличие квалификации сварщика;
  • оценивание качественных характеристик сварных швов;
  • проверка последовательности проведения технологии сварки;
  • контролирование качества швов;
  • проведение механических испытаний.

Стоит отметить! Во время начального этапа проверяются навыки и умения специалистов. Перед тем как выполнять работы, сварщик обязательно должен показать специальный паспорт, в котором указан допуск к сварочным работам. После он производит пробное соединение.

Пробные швы должны выполняться из того же материала и при помощи приборов, которые применяются при основных работах. Оценивание результатов производится визуальным осмотром. При необходимости могут быть проведены механические испытания. Если деталь будет качественной, то сварщик будет допущен к выполнению основных работ.

Физические и механические испытания сварных швов должны проводиться последовательно. Все действия должны учитывать:

  • сборка соединений должна быть правильной;
  • соблюдение требуемых показателей сварочной технологии — ток, напряжение;
  • способ формирования швов;
  • очищение от окалин, шлаковых образований. Это должно выполняться предварительно, перед нанесением последующих слоев.

Способы проверки

Металлографические исследования сварных соединений могут быть разрушающего и неразрушающего типа. Первый метод применяется в выборочном порядке. Выполняется проверка одного или нескольких изделий из большой партии или части металлической конструкции.

Проверка производится с учетом необходимых показателей, которые указываются в специальных протоколах испытаний. В обязательном порядке применяются устройства или материалы, которые позволяют проконтролировать качественные характеристики швов с сохранением целостности изделия.

Выделяют следующие физические методы контроля сварных соединений:

  1. Визуальный.
  2. Капиллярный.
  3. Радиационный.
  4. Магнитный.
  5. Ультразвуковой.

Чтобы минимизировать дефекты соединений обязательно выполняется операционное контролирование сварочных работ. Регулярно проводится аттестация, на которой комиссия должна дать допуск на сваривание контрольных швов. После прохождения данного испытания выполняется проверка теоретических знаний сварщиков.

Многие способы производятся с использованием специальных приборов, которые оказывают радиационное, магнитное, ультразвуковое воздействие. Обычно они выполняются на производствах с соблюдением требуемых норм и выставленных параметров.

Особенности визуального осмотра

Физические методы контроля сварных швов включают визуальный осмотр изделия. При помощи данного исследования можно обнаружить внешние и внутренние дефекты. По этой причине данная диагностика считается наиболее точной.

Физический метод контроля сварных соединений — это диагностика, которая проводится с применением различных излучений (лазерное, рентгеновское), они взаимодействуют с объектами контроля. При осуществлении данных диагностик соединение никогда не разрушается, обычно оно визуально исследуется.

Частые обрывания дуги можно обнаружить при помощи нескольких характерных качеств — разная высота и ширина катета. По этой причине обязательно требуется проводить предварительное исследование материалов, правильность подключения рабочего оборудования, его готовность к проведению сварочных работ.

Перед тем как будут проводиться испытания, соединения требуется очистить от следующих ненужных элементов:

  • окалины;
  • шлаки;
  • брызги от расплавленного металла;
  • различные загрязнения.

Обратите внимание! Чтобы лучше выявить мелкие трещины, стыковую область можно обработать при помощи раствора с азотной кислотой. Это придаст поверхности матовость, сделает более подходящей для проведения визуальной диагностики.

Этот способ испытаний позволяет выявить целый ряд дефектов шва:

  • внешние дефекты;
  • поры;
  • трещины;
  • непровары;
  • наплывы.

Для лучшей эффективности часто используют увеличительное стекло. Лупа оказывается незаменимым изделием, при помощи которого можно выявить незаметные дефекты.

Особенности капиллярного метода

Данное испытание на твердость сварных швов предполагает применение качества жидкости затягиваться в достаточно небольшие капилляры. Быстрота и степень проникновения во внутреннюю структуру материала связана с его смачиваемостью и размером диаметра капилляров.

Капиллярное исследование может применяться не только для металлических изделий, но и для элементов из керамики, стекла, пластмассы. Основное его назначение состоит в выявлении внешних изъянов, которые не получается обнаружить с первого взгляда. К примеру, при использовании керосина можно выявить сквозные дефекты.

К главным особенностям этого способа проверки качества шва относят:

  1. При капиллярном методе часто применяются пенетранты. Данные компоненты обладают небольшим поверхностным натяжением и сильным цветовым контрастом.
  2. При проникновении в области дефектов, пенетрантов подсвечивают их, именно это позволяет быстро обнаружить изъяны сварочного процесса.
  3. Пенетранты с высокой чувствительностью могут выявить дефекты с размером от 0,1 микрона.
  4. Капиллярное исследование подходит для дефектов с размером ширины до 0,5 мм. При большем размере трещин этот метод не работает.

Механические испытания сварных соединений — обязательные манипуляции, которые должны проводиться во время сварочной технологии. Они могут выполняться при помощи разных разрушающих и неразрушающих методов. Если все будет соответствовать установленным нормам и правилам, то сварщик допускается к проведению дальнейших сварочных работ.

Интересное видео

Контроль качества с разрушением сварного соединения — механические испытания

Механические испытания определяют прочность и надежность сварных соединений. Основные методы определения механических свойств сварных соединений и их отдельных зон устанавливает ГОСТ 6996 — 66, предусматривающий статические и ударные испытания при нормальных, а в некоторых случаях и при пониженных или повышенных температурах. Для сварных соединений ответственных конструкций, изготовленных из высокопрочных материалов или предназначенных для работы в условиях отрицательных температур и вибрационных нагрузок, дополнительно проводятся испытания на устойчивость к хрупкому разрушению и усталостную прочность. По характеру нагружения различают механические испытания:

  • статические — при которых сила нагружения плавно возрастает или длительное время остается постоянной;
  • динамические — при которых сила нагружения возрастает практически почти мгновенно и действует короткое время;
  • усталостные — при которых нагрузка многократно (при числе циклов от десятков до миллионов) изменяется по значению и знаку.
Читайте также  Как правильно выбрать сварочный инвертор?

Статические испытания. Стыковые сварные соединения подвергаются следующим статическим испытаниям: на растяжение, изгиб, ползучесть, твердость и т. д.

Рис. 1. Образцы для определения относительной прочности шва при толщине основного металла менее 3 мм (а) и более 3 мм (б)

Испытание на растяжение производится в целях определения прочности и пластичности сварного соединения. Для оценки временного сопротивления σв сварного соединения при растяжении (напряжения, отвечающего наибольшей нагрузке, предшествующей разрушению образца) используют:

  • образцы с валиком шва на лицевой поверхности (рис. 1), которые позволяют найти относительное значение σв шва в сравнении с σв основного металла;
  • образцы с валиком шва, снятым заподлицо с основным металлом, и специально выполненной выточкой шва, предопределяющей место разрушения (рис. 2), которые позволяют определить абсолютное значение σв.

Если прочность сварного соединения меньше прочности основного металла, то допускается использование для испытаний плоских и круглых образцов с одинаковым сечением. Причем длина захватной части таких образцов может выбираться в зависимости от конструкции испытательной машины, а изменение других их размеров недопустимо.

Для испытаний участков сварного соединения используются круглые образцы с рабочей частью диаметром 3 … 10 мм, вырезанные вдоль оси сварного шва в соответствующей зоне соединения при многослойной сварке.

При испытании на растяжение определяют условный предел текучести σ02, временное сопротивление σв и относительное удлинение δ.

Под условным пределом текучести понимают напряжение, при котором деформация образца составляет 0,2 % от его первоначальной расчетной длины.

Относительное удлинение образца представляет собой процентное отношение абсолютного остаточного удлинения к первоначальной расчетной длине образца.

Рис. 2. Образец для определения абсолютной прочности шва

Рис. 3. Схемы испытаний образцов на изгиб при продольном (а) и поперечном (б) расположении шва: В — ширина пуансона; S — толщина образца

Испытание на изгиб производится для определения пластичности сварного соединения в целом. Пластичность стыкового соединения при изгибе определяется по углу изгиба образца до образования первой трещины на любом его участке.

Схемы испытаний образцов на изгиб при продольном и поперечном расположении шва приведены на рис. 3, а формы образцов для испытаний — на рис. 4.

На практике часто вместо плоских образцов используют трубчатые. При испытаниях односторонних сварных швов в растянутой зоне должен располагаться верхний слой металла, а при многослойной сварке — шов, сваренный последним.

Для ответственных сварных соединений считается удовлетворительным угол изгиба 120 … 180° без образования трещин. При отсутствии трещин испытание заканчивается изгибом образца до достижения параллельности его сторон.

Рис. 4. Формы образцов для испытаний на изгиб с продольным (а) и поперечным (б) швами

Динамические испытания. К динамическим относятся испытания на ударный изгиб и усталость (выносливость).

Испытания на ударный изгиб заключаются в определении ударной вязкости сварного соединения при нормальной, пониженной и повышенной температурах, обусловленных условиями его работы. Образцы для таких испытаний (рис. 5) изготовляют в соответствии с ГОСТ 6996—66. Испытания проводятся на специальных образцах с надрезом, который может располагаться по оси шва, линии сплавления или в зоне термического влияния со стороны раскрытия шва. Место расположения надреза зависит от цели испытания. При испытании металла шва или основного металла надрез можно делать с любой стороны образца.

Испытания производятся на маятниковых копрах с различной предельной энергией. Для применения в лабораториях строительно-монтажных организаций рекомендуется маятниковый копер МК-30А, имеющий 15 ступеней запаса энергии и 17,5 тыс. ч полного технического ресурса. После испытания сварного шва исследуют структуру излома для определения дефектов. Ударная вязкость определяется как отношение работы, затраченной на излом образца, к площади его поперечного сечения в месте надреза до испытания.

Испытаниями на усталость (выносливость) определяют устойчивость металла к воздействию переменных нагрузок при изгибе, растяжении и кручении. Переменные нагрузки создаются при симметричном, асимметричном и пульсирующем циклах нагружения.

Рис. 5. Образцы разной толщины, используемые для испытаний на ударный изгиб: а — 10 мм и более; б — 5 … 10 мм; в — 2 … 5 мм

Рис. 6. Изменение действующих напряжений (а) и относительного удлинения (б) образца из металла в зависимости от числа циклов до разрушения

Испытаниям в условиях осевого нагружения подвергаются цилиндрические или плоские образцы специальной формы и определенных размеров, вырезанные поперек сварного соединения. При испытаниях определяют предел выносливости образца. Количественной оценкой усталостной прочности является число циклов, которое выдержал сварной образец до разрушения.

Типичные зависимости для металлов между уровнем действующих циклических напряжений σmax, удлинением после разрушения δ и числом N циклов изменения напряжений до разрушения образца, построенные по результатам испытаний при пульсирующем цикле, т. е. когда нагрузка изменяется от нуля до максимального растягивающего значения, показаны на рис. 6.

На кривой зависимости между действующими напряжениями и числом циклов до разрушения (рис. 6, а) можно выделить три участка. На участке I, называемом участком квазистатического разрушения, происходит направленное пластическое деформирование, и разрушение образца здесь соответствует разрушению при однократном приложении нагрузки. При этом относительное удлинение образца (рис. 6, б) равно относительному удлинению при статическом разрушении δст, а в некоторых случаях превышает его, и излом ничем не отличается от излома при статическом разрушении металлов.

На участке II имеет место малоцикловая усталость материала, и разрушение образца происходит вследствие возникновения и развития усталостной трещины, сопровождающейся заметными пластическими деформациями.

Участок III — это участок многоциклового усталостного разрушения материала при почти полном отсутствии остаточного удлинения образца. В некоторых случаях этот участок на кривой σmax = f(N) переходит в горизонтальную линию, соответствующую напряжению σг, что свидетельствует об отсутствии разрушений при напряжениях ниже этого значения, даже если число циклов нагружения существенно увеличивается.

Число циклов нагружения, при котором имеет место переход от одного участка зависимости σmax = f(N) к другому, для различных материалов и режимов нагружения различное.

Исследование разрушения металлов в условиях многоциклового изменения нагрузки производится, как правило, при синусоидальном цикле нагружения. При этом различают симметричный и асимметричные циклы нагружения. При симметричном нагружении (рис. 7, а) среднее напряжение цикла σср равно нулю, а изменяется напряжение от минимальных значений сжатия σmin до максимальных напряжений растяжения σmax. При асимметричных циклах нагружения (рис. 7, б) среднее напряжение не равно нулю, и оно может иметь любые значения как в области растяжения, так и в области сжатия.

Рис. 7. Синусоидальные циклы нагружения образцов: а — симметричный; б — асимметричный

Рис. 8. Типовая кривая усталости для образцов металлов: Nб — базовое число циклов

Результаты исследования усталости металлов представляются в виде кривых усталости — графиков, характеризующих зависимость между максимальными, или амплитудными, напряжениями (деформациями) и числом циклов нагружения образца до разрушения, которые были получены при испытании партии одинаковых образцов при одинаковом среднем напряжении (деформации) цикла или при одинаковом коэффициенте его асимметрии (рис. 8).

Помимо рассмотренных видов испытаний, предусмотренных ГОСТ 6996 — 66, иногда необходимо проведение дополнительных испытаний для получения других прочностных характеристик. Обычно при этом стремятся создать условия нагружения и работы образцов, идентичные тем, на которые рассчитана работа конструкции. Например, это дополнительное испытание особых образцов, в рабочих сечениях которых тем или иным способом создается плоское напряженное поле, характерное для металла сосудов, работающих под давлением. В этом случае образцы представляют собой плоские или круглые стержни с захватами на концах и специальными проточками в центральной части, которые обеспечивают получение плоской схемы напряжений при нагружении.

Однако в настоящее время чаще применяют схему испытаний с разрушением основного металла или сварных соединений. Критериями прочности в этом случае являются максимальное давление и утончение образца.

Измерение твердости. Для установления изменения структуры металла шва и околошовной зоны, а также для оценки степени закалки зон сварного соединения и неоднородности его механических свойств измеряют твердость сварных швов.

Рис. 9. Схемы (а, б) измерения твердости сварных швов (измерения производятся в точках пересечений линий 110)

Обычно твердость определяют на шлифах для металлографического анализа тремя способами:

  1. вдавливанием стального закаленного шарика диаметром 1,568 мм или алмазного конуса с углом при вершине 120° (способ Роквелла);
  2. вдавливанием четырехгранной алмазной пирамиды с квадратным основанием и углом между противоположными гранями 136° (способ Виккерса);
  3. вдавливанием стандартного стального закаленного шарика определенного диаметра (способ Бринелля).
Читайте также  Снятие напряжений после сварки

Измерение твердости по сечению стыкового шва производят в двух направлениях: по его продольной оси и от центра к основному металлу. Образцы для испытаний вырезаются таким образом, чтобы в них имелись все участки сварного соединения: основной металл, металл шва и зоны термического влияния, и на этих трех участках определяют твердость. Измерения производятся на поперечном сечении образца в двух взаимно-перпендикулярных направлениях: по оси шва и вдоль линий, параллельных верхней и нижней поверхностям листа (рис. 9). У стыковых соединений толщиной до 3 мм твердость может измеряться на их наружной поверхности при снятом усилении шва.

Проведение проверки сварочных соединений путем механических испытаний

Технология, которая применялась во время того как создавали сварочный шов не так уж и важна. При любых условиях шов имеет общие характеристики, которые можно заметить у любых сварочных соединений.

Одни из этих качеств это ударная вязкость, твердость, прочность, пластичность. И качество этих свойств зависит от того, профессионально ли выполнена работа.

Но возможно ли выявить уровень качества этих общих характеристик и как это сделать? Чтобы выполнить такую проверку нужно применить разрушающий метод контроля качества швов. Такие проверки называются механическими испытаниями сварных соединений.

Швы при таком методе проверки деформируются, так как они подвергаются механическому воздействию. Поэтому этот способ испытания и получил такое название, потому что испытывает соединения на прочность.

Сейчас мы и расскажем в подробностях об методе механических испытаниях сварных соединений, его особенностях, плюсах и минусах.

  • Вводные данные
  • Плюсы и минусы метода
  • Исследуемые свойства
  • Характерные отличия
  • Подведем итог

Вводные данные

Механические испытания сварных швов — это сочетание нескольких механических действий, которые определяют механические качества сварных соединений. Этот метод проверки имеет разрушающих эффект, поэтому его применяют на крупных предприятиях.

Там всё производство серийно, и чтобы создать тираж, берут единый образец для всех заготовок, по одному объекту можно определить качество всей партии.

Для метода, который мы рассматриваем необходимо особенное оборудование. Оно проверяет сварные швы на прочность, сохраняет полученные данные. Это значительно ускоряет и упрощает дело.

Обычно проверяют только один образец, но чтобы результат был наиболее точным, можно взять на испытание несколько образцов. Для регулирования механической проверки швов существует нормативный документ. Он называется ГОСТ 6996-66.

Также стоит прочитать РД 26-11-08-86 – это дополнение, в котором тоже можно прочитать о регулировке испытаний сварных соединений.

Для всех начинающих будет полезным изучить в подробностях эти документы, так как там существует детальная инструкция по механическим испытаниям сварных швов.

В этих документах вы сможете найти больше информации про механические испытания сварных соединений, чем в отдельных статьях. Там собрана вся информация по этой теме.

Плюсы и минусы метода

Положительные и отрицательные стороны есть у всего, и у механических испытаний сварных соединений тоже. Их количество небольшое, но всё же стоит знать, чтобы лучше понимать, когда этот метод проверки проводить не желательно.

Основная положительная сторона сосредоточена в максимальном получении всей информации о характеристиках соединений. Вам будет известен показатель прочности и пластичности, какой ударной вязкостью и твердостью обладает сварной шов.

А ещё этот вариант не потребует много денег, конечно если использовать простое оборудование, без лишних функций и без сложного управления.

Также механические испытания сварных соединений не требуют большого опыта и профессиональной подготовки. Достаточно поручить это дело одному из сварщиков. Изучение процесса испытания пройдёт быстро.

Далее о минусах. Самый основной из них – это узкая направленность. Некоторые детали могут не выдержать давления оборудования и разрушиться.

Один образец может ничего не значить для большого тиража, но при выпуске маленьких партий, разрушение одного экземпляра может повредить всему производству.

Исследуемые свойства

Деформация детали при механических испытаниях сварных соединений зависит напрямую от физических свойств металла, из которого она изготовлена. Если по-простому, то какой металл, столько она прослужит.

Для того чтобы это вычислить образец необходимо проверить разрушительным методом испытания. Основная цель – это выяснить на что способна та или иная деталь. Для этого производится давление до тех пор, пока она не сломается.

Основные характеристики швов, которые вы сможете проверить путём механического испытания, вам уже известны. Туда входят твёрдость, ударная вязкость, прочность, пластичность. А теперь мы поведаем об этих свойствах более углубленно.

Показатель, который позволяет узнать насколько образец может изменять свою форму – это пластичность. Для выяснения этого аспекта металл проходит через механическое удлинение.

Насколько возможно, что другой предмет может проникнуть в структуру нашей детали? Это мы можем узнать при помощи показателя твердости металла. Возможен не один способ проверки этого показателя.

Например, методы, названные в честь Бринеля, Виккерса, Роквелла. А общее у них одно – в образец, который испытывают, подают какую-нибудь вещь, затем фиксируют, как деталь противостоит этому влиянию.

Способов для проверки этого показателя крайне много, поэтому останавливаться мы здесь не будем.

Испытание прочности чем-то похоже на испытание твёрдости. Но прочность всё же отличается. Эта проверка на умение образца сопротивляться всяческим нагрузкам.

Например, сопротивление растяжения. Запчасти крепятся в специальном оборудовании, которое производит растяжение металла в разные стороны.

Этот способ обладает хорошей эффективностью. Но если вы хотите увеличить её уровень, можете повышать температуру металла в процессе. В испытательном аппарате для этого специально встроена муфельная печь.

Также печь позволяет узнать о теплостойкости детали. Нагревать металл необходимо около получаса. Только в этом случае вы можете добиться максимальной достоверности.

Показатель ударной вязкости сварных соединений не менее важен. Он позволяет выяснить насколько деталь может подвергаться ударным нагрузкам.

Для этого испытания можно использовать обычные механические удары, бить до того момента, пока образец не разрушится.

Один из часто используемых видов проверки – это проверка при помощи маятника, на котором закреплен груз. Образец попадает под удары, путём поднимания и опускания оборудования. Маятник достигает нужной скорости, и сила удара возрастает.

Характерные отличия

Конечно, в большинстве случаев таких испытаний запчасти будут повреждены или вовсе разрушены. Но бывают моменты, когда разрушение не самый лучший выход.

Поэтому в таких ситуациях нужно подумать о других методах испытаний сварных соединений, с минимальными разрушениями.

Когда вы приступаете к разрушающему методу необходимо поддерживать один температурный режим в комнате, где производите работу. Также фиксируйте данные исследуемых сварных заготовок и все виды нагрузок.

Также разрушающий метод для проверки деталей может производиться с оглаской на начальное состояние заготовок. Если вы в первый раз занимаетесь такими испытаниями швов, вы можете забыть об этой важной детали.

Ведь если взять изначально деталь плохого качества, то вероятно она сломается гораздо быстрее, чем качественный образец без изъянов.

Для того чтобы не сталкиваться с такими неудобствами, нужно просто заранее проверить деталь на наличие сварных дефектов.

Опытный сварщик, пользуясь своими глазами, а в некоторых случаях лупой, сможет выявить все огрехи, которые наверняка плохо бы отразились на итоговом результате разрушающих испытаний.

Чтобы эти дефекты не портили конечный итог, обязательно проверяйте образцы на визуальные недостатки.

Также желательно подвергать проверке несколько образцов из одного тиража, для более точного результата. Есть вероятность что результаты, которые вы получите, будут различаться друг от друга.

Из этих итогов можно вывести среднее значение, тем самым у вас будет на руках наиболее точный результат. Испытания нескольких деталей из всей партии намного предпочтительнее.

Человеческий фактор также важен, несмотря на то что все детали выполнялись одним сварочным оборудованием с одинаковыми режимами работы.

Поэтому когда вы берёте лишь один образец, вы можете наткнуться на бракованную деталь, или наоборот пропустить такую, среди множества похожих заготовок из всей партии.

Подведем итог

Если эта проверка сварных соединений показалась вам сложной, то это не так. Среди большинства методов, этот довольно прост и быстр.

В отличие от металлографии, при которой необходимо изучать саму структуру соединений под микроскопом. Этот метод явно сложнее и утомительнее.

Такие испытания не желательно применять на маленьком производстве с небольшими партиями продукции. Но для крупносерийного предприятия этот метод довольно эффективен.

Проводя испытания всего на одной детали, вы можете выявить общие качества всей партии. А знаком ли вам разрушающий метод проверки швов? Пишите о своём опыте в комментариях. Продуктивности в работе!

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: