Дефектоскоп для проверки сварных швов

Ультразвуковой дефектоскоп и приборы ультразвукового контроля сварных соединений

Ультразвуковой дефектоскоп и приборы ультразвукового контроля сварных соединений

  1. Главная
  2. Блог
  3. Ультразвуковой дефектоскоп и приборы ультразвукового контроля сварных соединений

На данный момент, для обследования конструкций и изделий применяется множество методов: радиографический, визуально-измерительный, метод капиллярного поднятия, магнитный, эхо-импульсный, тепловой и т.д.

Принцип ультразвукового контроля, получение и свойства ультразвуковых колебаний

Одним из самых распространенных и наиболее достоверных методов обследования, можно считать метод ультразвуковой дефектоскопии. Этот метод основан на применении эффекта колебания волн. При прохождении колебаний через какую-либо однородную среду, они не откланяются от заданной траектории, однако, если на пути волн, встречаются трещины, пустоты, шлаковые включения, неровности, неоднородности структуры и другое, то это все будет отражено на панели прибора для ультразвукового контроля — дефектоскопа. Это оборудование ультразвукового контроля помогает обследовать качество монтажа сварных соединений, место расположения брака в соединениях и конструкциях, размер дефекта, иногда возможно определение вида дефекта по видимым характеристикам.

Применение УЗК дефектоскопии

  • Входной контроль металлических и пластмассовых изделий.
  • Определение износостойкости магистральных трубопроводов, конструкций тепловой, химической и нефтеперерабатывающей промышленности.
  • Проверка состояния деталей и элементов на предприятиях машиностроительного комплекса.
  • Обследование соединений и сварных швов элементов.
  • Проверка качества и состояния различных металлических элементов в лабораторных и полевых условиях.

Приборы ультразвукового контроля

Сфера применения ультразвуковых установок достаточно обширная. УЗК дефектоскопы способны определять несоответствия структуры в металлических конструкциях и неметаллических изделиях. Их огромное преимущество в том, что проводить обследование возможно также на геометрически разных элементах, кругах, ромбах, пластинах или других сложных фигурах.

Аппаратура для ультразвукового контроля применяется на начальном этапе строительства, изготовления материала, в процессе монтажа, при длительной эксплуатации элемента и т.д.

Также эти приборы широко применяются, потому что относятся к одному из методов неразрушающего контроля, то есть, используя любой дефектоскоп, отсутствует риск повреждения как внутренней, так и внешней структуры материала.

Из чего состоит дефектоскоп

Чтобы наиболее точно понять принцип действия УЗК, разберем, из чего состоят приборы ультразвукового контроля:

  • источник испускания ультразвуковых волн;
  • специальный приемочный элемент для приема волн;
  • датчик контроля;
  • панель вывода результатов исследования.

Для определения расстояния до дефекта, проводится замер времени распространения волны до начала инородных показаний на приемнике, а для того, чтобы узнать точную величину нарушения, используют амплитуду отраженного импульса.

Приборы для ультразвукового контроля

На данный момент существуют различные виды дефектоскопов и их модернизации, в целом их все можно разделить на две основные группы: это толщиномеры и, непосредственно, дефектоскопы, работающие засчет акустических колебаний. В составе с ними применяются преобразователи звуковых колебаний и специальные кабели. Для создания благоприятной среды для прохождения волн, при обследовании применяются специальные гели, которые наносятся на материал изделия.

Вихретоковый дефектоскоп вит-4

Наиболее популярное в России устройство для нахождения и определения глубины трещин в металле.

Масса такого изделия не более 500 грамм, что позволяет ему быть абсолютным мобильным.

Прибор применяется на изделиях из металла с минимальной толщиной 2 мм.

В комплекте к данному оборудованию идут:

  • Преобразователь вихретоковый.
  • Батарея.
  • Кабель соединительный.
  • Наушники.
  • Специальное руководство по правильному использованию.
  • Чехол для данного оборудования.
  • Два контрольных образца из стали и алюминия с трещинами для проверки пригодности.

Примерная стоимость дефектоскопа ВИТ-4 равна 50000 руб. с эксплуатационным сроком годности 3 года.

Ультразвуковой дефектоскоп для контроля сварных соединений «ПЕЛЕНГ»

Оборудование такого вида предназначено для обследования элементов на наличие сплошностей, однородности, дефектов сварных швов. Может определять, на какой глубине находится нарушение и его примерную величину.

Вес устройства до 1 кг. Он может производить обследование на материалах толщиной от 2 мм до 1,5 м.

Приборы ультразвукового контроля сварных швов типа EPOCH

Это современный прибор, в котором сочетается стандартный набор возможностей ультразвукового устройства с фазированной решеткой. Используется для исследования состояния сварных швов. Достоинство этого оборудования в том, что он может работать в очень широком диапазоне температур, то есть имеется возможность проведения обследования во время нанесения шва и сразу после.

Также у него упрощенная калибровка чувствительности и имеется возможность фокусировки. Имеется возможность отсеивания шума, что увеличивает точность снимков.

Ступая в ногу со временем, в данном устройстве имеется большой объем памяти, это позволяет сохранять снимки сразу в приборе без вывода их на печать. Прибор способен передавать данные сразу на программное обеспечение компьютеров без потери качества изображения.

Устройство УД2-70

УД2-70 одна из модификаций устройств типа УД. Данное оборудование ультразвукового контроля являются практически универсальными, так как позволяют определять сплошность, находить трещины, обследуются им сварные швы, мелкие детали, полуфабрикаты. Особенно полюбился данный прибор в локомотивной промышленности. Приборы УД имеют интерфейс для обнаружения дефектов в деталях колесных пар, МПВС и т.д.

Масса данного изделия, хоть и больше, чем у выше стоящих приборов, 2200 г, но он все еще является мобильным и доступным. Возможность снимков через толщины от 2 мм до 5 метров!

Корпус аппарата сделан из алюминия, что придает ему особенную надежность. Чувствительность контрастов на высоте и также имеется внутренний объем встроенной памяти, что позволяет сохранять результаты обследования.

Аппарат ультразвукового контроля сварных соединений УСД

Универсальное оборудование, на рынке присутствует в различных модификациях. Сделан из ударопрочного материала.

Масса аппарата 1500 г. Аппараты этой серии также имеют вход для энкодера, что позволяет легко и быстро подключать сканеры для построения разверток участка обследования.

К приятным функциям данного аппарата, кроме его надежности и хороших эксплуатационных характеристик, можно отнести функцию смены цвета дисплея.

Дефектоскопы ультразвуковые для контроля сварных швов «СКАРУЧ»

Применяется для материалов толщиной от 4 до 60 мм, имеется встроенная функция толщиномера. Применяется для обследования сварных соединений и конструкций округлой формы (магистральные трубопроводы, различные сосуды и т.п.).

Имеется возможность подключения к компьютеру для передачи информации или подключение к принтеру для вывода информации на бумагу.

Вес сканирующей установки около 4 кг.

Прибор сертифицирован и применяется в различных отраслях промышленности и строительства. Является ручным прибором без автоматической настройки данных.

Ультразвуковое устройство DIO 1000 SFE

Оборудование оснащено по последнему слову техники, современными функциями подключения персонального компьютера, принтеров и дополнительных сканирующих установок. Имеет большой экран, компактен и прост в использовании.

Является высокочастотным аппаратом, вес составляет всего 1,3 кг!

Для удобства пользования экран оснащен антибликовой функцией, является полностью цифровым устройством.

Один из самых высоких температурных диапазонов эксплуатации от -20 до 60 градусов. Может функционировать от батареи до 10 часов.

Применение дефектоскопов за границей

Первые дефектоскопы были лампового типа, и производиться они начали в середине двадцатого века.

В быстром потоке развития технологий, дефектоскопы постоянно меняются, модернизируются и совершенствуются. За границей треть всех обследований конструкций и изделий производится УЗК неразрушающим методом.

В связи со своими малыми размерами и безопасностью для окружающей среды, приборы для ультразвукового контроля сварных соединений широко применяются на атомных электростанциях, трубопроводах с горючими веществами и др., так как на таких предприятиях трудно использовать автоматические исследовательские устройства.

Ультразвуковые толщиномеры

Толщиномеры – это оборудование ультразвуковой дефектоскопии, применяются для измерения толщины верхнего покрытия металлического изделия, чтобы определить целостность слоя, степень его износа.

Работает толщиномер с помощью ультразвуковых колебаний, но настроен иначе. После приложения его к покрытию, волны проникают сквозь лакокрасочный слой и упираются в металлическую поверхность под ним. Данные о времени прохождения слоя до его отражения металлической поверхностью считываются и прибор выдает точное значение толщины.

Достоинства и недостатки приборов ультразвукового контроля сварных швов

Начнем с преимуществ, которых достаточно много:

  • Эхо-импульсное оборудование является безопасным для окружающей среды и людей.
  • Компактность приборов способствует их высокой мобильности.
  • Получение результатов в момент обследования.
  • Вследствие высокой мобильности, возможно проведение обследования в условиях эксплуатации объекта без прерывания его работы.
  • Относительно низкая стоимость.
  • Высокая точность полученных результатов.

Данные с дефектоскопов позволяют, как определять наличие дефектов, так и определять характеристики сплавов и их свойства.

  • Не могут со 100% точностью определить размер дефекта.
  • Для расшифровки результатов необходимо наличие специалиста с определенной квалификацией.
  • Невозможно проведение испытания, если дефектоскоп не касается предмета обследования.
  • При использовании устройства на некоторых видах металла (имеющих зернистую структуру) имеется возможность получения недостоверных результатов, вследствие рассеяния волн в зернистой структуре.

Дефектоскопы – это во многом универсальные устройства, которые помогают тщательно и быстро проводиться исследования любых элементов, изготовленных из металлов и сплавов.

117105 г.Москва, Варшавское ш., дом 17
+7 (495) 825-44-52

Читайте также  Сварка жести инвертором

Ультразвуковые дефектоскопы

В нашем интернет-магазине можно купить ультразвуковой дефектоскоп для профессионального использования по доступным ценам. Доставляем оборудование по Москве, Санкт-Петербургу, в другие города России. Предлагаем оборудование, необходимое для получения лицензии на выполнение определенных видов деятельности.

Сферы применения

У нас можно купить приборы, которые подходят для контроля качества и надежности изделий из различных материалов на каждом этапе производства. Они также могут использоваться для контроля этих же показателей уже в процессе эксплуатации готовых объектов и изделий. Их много, они различаются принципом действия, функционалом, размерами и другими характеристиками, но используются для одной цели.

Оборудование для ультразвукового контроля позволяет выявлять и классифицировать дефекты, оценивать несущие способности различных конструкций и их износ. С помощью этой техники выявляют дефекты, слабые места и однородность материалов различных объектов и конструкций:

  • трубопроводы;
  • несущие конструкции;
  • листовой прокат;
  • балки и брусья;
  • сварные швы;
  • детали самолетов и др.

Дефектоскопы позволяют выявить различные дефекты задолго до их появления. За счет этого можно предотвратить поломки механизмов, разрушения конструкций и аварийные ситуации на производствах. Они также помогают экономить средства, время и ресурсы, затраченные на производство деталей. Ведь некоторые неисправности, обнаруженные уже по окончании производственного процесса, не подлежат исправлению. И детали классифицируется как брак.

Принцип работы

  • выявить брак в конструкциях и сооружениях;
  • избежать аварийных ситуаций;
  • проверить надежность сварных швов, пайки и других крепежей.

Критерии выбора

Что мы предлагаем

Для выездных проверок рекомендуем мобильные модели, например Velograph II или А1211 Mini. Это небольшие приборы, но их функционала достаточно для проверки любых конструкций. При этом они удобны для транспортировки и эксплуатации в разных условиях.

Для стационарной диагностики на производстве подойдут модели в классическом исполнении, это УД3701 или А1212 Мастер. Первый – доступный в финансовом плане, но при этом отличается высокой точностью контроля и эксплуатационной надежностью. Используется для контроля стальных объектов толщиной до 6000 мм. Он выполнен в легком, противоударном металлическом корпусе, прост в настройке и обслуживании, питается от аккумулятора 12 А/ч и может работать до 20 часов без подзарядки.

А дефектоскоп А1212 Мастер – полностью цифровой, современных прибор, который использует типовые и специализированные методики УЗ-контроля. Он гарантирует высочайшую точность измерений и подходит для оценки состояния объектов из пластмасс, металлов, позволяет выстраивать функции ВЧР по 32-м точкам, использовать АРД-диаграммы.

Купить подходящий под ваши цели дефектоскоп можно в наших магазинах в Москве и СПб. Предлагаем доступные цены и быструю доставку не только по Москве, но и за ее пределы. Если вы живете в другом городе, организуем оперативную доставку с помощью транспортной компании. Обращайтесь, если нужна подробная консультация и помощь в выборе по цене и функционалу.

Ультразвуковые дефектоскопы

Содержание

  • Ультразвуковой дефектоскоп: виды, предназначение принцип работы
  • Как осуществляется контроль ультразвуком?
  • Как работает ультразвуковой дефектоскоп сварных соединений?
  • Источник подачи ультразвука
  • Этапы диагностики
  • Как добиться максимально точных результатов исследования?
  • Дефекты, которые точно фиксирует УЗД диагностика
  • Область применения ультразвукового дефектоскопа
  • Преимущества ультразвуковых дефектоскопов
  • Ультразвуковой дефектоскоп: цена, доставка

Ультразвуковой дефектоскоп: виды, предназначение принцип работы

Ультразвуковой дефектоскоп — это оборудования предназначенное для выявления дефектов изделия без его повреждений. Изъяны обнаруживаются путем проникновения ультразвуковых волн в металл. Популярность аппаратуры высокая, ведь это единственный метод получить точные результаты диагностики, не повреждая естественную структуру изделия.

Как осуществляется контроль ультразвуком?

Метод чаще используют для контроля прочности сварных швов. Ультразвуковой дефектоскоп сварного шва работает по следующему принципу. В толщу металла распространяются определенные деформации, именуемые акустическими или упругими волнами. Они бывают нескольких видов:

  • инфразвуковые;
  • звуковые;
  • ультразвуковые;
  • гиперзвуковые.

    Во время распространения ультразвука, среда, по которой он расходится, совершает размеренные колебания относительно точки равновесия. В твердых телах могут действовать продольные и поперечные колебания. Максимально точно контролировать прочность сварных швов позволяют оба вида волн. Скорость подачи и распространения ультразвука напрямую зависит от прочности и внутренней среды исследуемого материала. Интенсивность подачи звуковых волн можно контролировать.

    По мере распространения звуковой волны, ее интенсивность утихает. От того, какими темпами это происходит, можно судить о плотности материала. Прибор показывает коэффициент затухания ультразвука, формируя его исходя их показателей рассеивания и поглощения. Точность показаний высокая, что позволяет получить четкую картину о качестве сварных швов, металла, прочих твердых материй.

    Как работает ультразвуковой дефектоскоп сварных соединений?

    Науке известно всего несколько способов работы с ультразвуковыми аппаратами для произведения контроля плотности сварных швов, прочих металлических соединений. Их отличия только в методе оценки полученной информации. Любой из видов оценки данных соответствует действующему ГОСТУ.

  • Теневой метод. Фиксирует амплитуду подачи и уменьшения поданных в соединение ультразвуковых волн.
  • Зеркально-теневой. Обнаруживает дефекты материала, основываясь на коэффициент затухания импульса.
  • Тандем метод. В диагностики участвует два аппарата, расположенные параллельно друг другу. Показатель срабатывает, когда волны приближаются дефекту на равное расстояние.
  • Эхо. Определяет изъян, основываясь на мощность звука, который издает волна, соприкасаясь с дефектом.

    Источник подачи ультразвука

    Несмотря на разные способы сбора аналитических данных, ультразвуковые дефектоскопы металлу использует схожий метод работы. Главной деталью в аппарате служит пластина из кварца или титана бария. Пластина располагается в специальном щупе (искательной головке). Щуп медленно перемещают по исследуемой поверхности, фиксируя коэффициент угасания волны. Волна подается за счет действия электрического тока, вследствие действия которого вырабатываются пучки ультразвука. На основе полученных данных можно говорит о плотности соединения, наличии дефектов, полостей, трещин, прочих ненужных деформаций.

    Этапы диагностики

    Перед началом исследования необходимо произвести зачистку металла от коррозии, краски, прочих посторонних материй. Нет необходимости зачищать всю поверхность. Достаточно соблюдать промежуток до 70 сантиметров. В таком виде материал уже готов к диагностике, но лучше будет дополнительно обеспечить проходимость ультразвука. В этих целях используют солидол, масло, глицерин, прочие жидкости, содержащие жировые включения.

    Ультразвуковой дефектоскоп сварных швов перед началом работы нужно настроить для решения конкретно поставленных целей. Здесь есть несколько вариантов:

  • исследование материала толщиной менее 20 мм (используются стандартные заводские настройки);
  • диагностика материала, толщина которого свыше 20 мм (нужны параметры АРТ-диаграммы);
  • оценка качества сварных соединений (необходимы комплексные настройки, содержащие параметры диагностики АРТ диаграммы, прочих сложных импульсов).

    Как добиться максимально точных результатов исследования?

    Для получения более точных данных необходимо зигзагообразно перемещать щуп дефектоскопа по поверхности исследуемого материала. При этом желательно хотя бы на 10-15% вращать щуп вокруг оси металла. Если прибор издает какие-либо нехарактерные колебания, в указанном месте необходимо максимально сильно развернуть щуп, чтобы появилась возможность точно определить дислокацию некачественного соединительного шва. Поиск продолжается до тех пор, пока не будет установлено место материи, где пик ультразвука наивысший.

    Следует учитывать, что прибор ультразвуковой диагностики может выдавать погрешности вследствие отражения волны от швов. Для этого используют дополнительные способы исследования. Если несколько способов диагностики приводят к одному и тому же ответу, можно фиксировать дефект, записывая координаты изъяна. Производители оборудования, опираясь на требования и правила ГОСТА, рекомендуют производить диагностику одного и того же объекта не менее двух раз разными приборами.

    Полученные во время работы ультразвукового дефектоскопа данные, записываются в специальный журнал или таблицу. Это позволяет не только быстро устранить изъян в соединении, но и ускорить повторную диагностику, ведь потенциальные проблемные места уже известны.

    Дефекты, которые точно фиксирует УЗД диагностика

    Контроль сварочных швов, произведенный с помощью приборов ультразвука, дает четкую картину ситуации. Правильно выполненная работа с аппаратом практически на 100% гарантирует точность ответа на вопросы. Но, все же, область использования оборудования имеет некоторые ограничения.

    Проблемы, которые реально зафиксировать УЗД датчиком:

  • трещины и сколы;
  • поры;
  • недоваренный сварной шов;
  • расслоения сплавов металла;
  • свищи;
  • провисания сварного шва в начале или конце конструкции;
  • коррозии;
  • несовместимость двух видов металлов в одном соединении;
  • несоответствие геометрических параметров согласно схеме конструкции.

    Диагностика максимально точна, если применять ее к следующим видам металла:

  • медь;
  • чугун;
  • сталь.

    Швы, которые можно исследовать при помощи ультразвука могут быть:

  • продольными;
  • поперечными;
  • кольцевыми;
  • плоскими;
  • тавровыми.
    Читайте также  При сварке прилипает электрод

    Область применения ультразвукового дефектоскопа

    Наибольшую востребованность подобные приборы получили в производственной сфере. Также услугу диагностики можно заказывать в частном порядке для контроля сварочных швов при строительстве зданий, реконструкции жилых и промышленных помещений. Узд контроль швов незаменим, когда нужно определить степень износа водопроводных, газовых труб. Активно закупки оборудования осуществляют владельцы нефтяной, химической и машиностроительной промышленности. Портативные УЗД дефектоскопы используются геологами в полевых условиях, а также лаборантами для исследования мелких предметов.

    Преимущества ультразвуковых дефектоскопов

    Ультразвуковой дефектоскоп: цена, доставка

    На сайте представлены лучшие модели приборов. Диапазон цен и функциональных возможностей приятно удивит клиентов компании. Уточнить точную стоимость дефектоскопа можно, воспользовавшись электронной формой связи, указав точную модель прибора. Все модели диагностической аппаратуры подробно описано. Здесь посетители узнают данные о производителе, функциональных возможностях, габаритах, области применения конкретного дефектоскопа. Дополнительные вопросы уточняются у консультанта.

    Любой ультразвуковой дефектоскоп купить цена зависит также от производителя. На весь ассортимент сайта распространяется гарантия от производителя. Осуществляется адресная доставка в регионы. Клиентам доступны бесплатные консультации. Сэкономить помогут акции, распродажи, информация о которых регулярно обновляется на портале.

    Ультразвуковой дефектоскоп для контроля сварных соединений

    Неразрушающий контроль соединений – современный метод диагностики наличия и глубины дефектов в узлах и деталях. В отношении оценки последующей работоспособности сварных соединений особенно эффективной признана ультразвуковая дефектоскопия. Дело в том, что в подавляющем большинстве производственных ситуаций имеющиеся неоднородности сварного шва располагаются так, что хорошо отражают именно акустические волны сверхвысокой частоты. Этот метод проверки и заключает в себе ультразвуковой дефектоскоп.

    В чём заключается эффективность неразрушающего контроля сварных соединений?

    Идеально однородные среды в процессе взаимодействии с источником ультразвуковых колебаний не ослабляют амплитуду звуковых волн. Совсем иное происходит, если сканируются реальные объекты. При наличии в них участка с искажениями первоначальной структуры всегда наблюдается существенное искажение и уменьшение амплитуды звукового давления, которое количественно проявляется в виде ослабления или даже полного поглощения ультразвуковых волн.

    Интенсивность таких искажений устанавливается законом ослабления

    где: Р – исходное значение амплитуды звукового давления; Р – значение на выходе из диагностируемого сварного шва; d – толщина шва; α – коэффициент ослабления.

    Поскольку параметр d чаще представляют как расстояние до источника ультразвукового излучения, то считается, что звуковая волна имеет вид полусферы, а потому ослабление будет равномерным по всем направлениям. В практике измерений оно обычно устанавливается в децибелах (дБ), поэтому может быть вычислено по формуле

    Промышленный ультразвуковой дефектоскоп, применяемый для определения сплошности и качества сварных швов, оценивает интенсивность эхо-сигнала, которая пропорциональна амплитуде звукового давления:

    где: Н и Н соответственно — амплитуды звукового сигнала на входе и выходе из прибора.

    Для практически применяемого диапазона частот 1…15 МГц (что и случается для подавляющего большинства металлических изделий) интенсивность эхо-сигналов соотносится с относительным ослаблением ультразвукового сигнала следующими соотношениями:

    Н/Н 1,26 1,78 2,82 5,01 10,0 21,62
    Мощность сигнала, дБ 2 5 9 14 20 30

    Из представленной таблицы следует, что применение оценочного критерия логарифмической интенсивности ультразвукового сигнала может эффективно фиксировать изменения в его амплитуде.

    Причинами ослабления ультразвуковых волн происходит вследствие поглощения и рассеивания сигналов. Энергия поглощения превращает колебательную энергию в тепловую. Она пропорциональна частоте ультразвуковых колебаний, поэтому ультразвуковые дефектоскопы для контроля сварных соединений изготавливаются с максимально возможными генерируемыми частотами.

    С повышением частоты облегчается фокусировка прибора, благодаря чему распознавание неоднородностей или дефектов улучшается. При этом должны соблюдаться следующие условия:

    1. Размер оцениваемой неоднородности должен быть больше половины длины волны.
    2. Направление сканирования должно быть перпендикулярным направлению хода звукового луча.
    3. Прибор не должен использовать так называемые критические частоты (для металлических конструкций это, например, частоты близкие к 6 МГц), при которых из-за явления дифракции ультразвуковых волн чувствительность метода резко снижается.

    Энергия рассеивания более существенна для поликристаллических тел. Поэтому для крупнозернистых структур (например, чугуна) ультразвуковая дефектоскопия малочувствительна. Также неэффективно ультразвуковое сканирование при пониженных температурах окружающей среды.

    Для получения ультразвуковых колебаний применяются два вида источников: магнитострикционные генераторы и пьезоэлектрические преобразователи. Каждое из устройств имеет свои рациональные области применения.

    Конструкции ультразвуковых пьезоэлектрических дефектоскопов

    Пьезоэффект заключается в том, что при силовом воздействии на определённые кристаллические вещества (изоляторы с полярно расположенными осями) в них возникают напряжения определённого знака, которые, в свою очередь, инициируют электрические поверхностные заряды. При этом величина напряжений прямо пропорциональна механической нагрузке, что очень важно именно в конструктивном смысле, поскольку упрощает конструкцию прибора. Таким образом цена ультразвукового дефектоскопа для контроля сварных соединений будет невысокой.

    Пьезоэлектрический эффект обратим, а потому использующие его ультразвуковые дефектоскопы быстро переналаживаются, и не нуждаются в сложной регулировке. При этом при помощи прямого пьезоэффекта ультразвуковые волны обнаруживаются, а при помощи обратного – генерируются.

    Принцип работы пьезогенератора дефектоскопа следующий. На конденсаторные пластины, которые наложены на кристалл, подаётся переменное электрическое напряжение. Это вызывает колебание кристалла с той же частотой. В качестве преобразователей используют такие материалы, как кварц, титанат бария, сульфат лития и др. При наличии внешнего давления атомы в структурной ячейке пьезоэлемента сдвигаются, что и является моментом начала разряда конденсаторных пластин. При изготовлении ультразвукового дефектоскопа для контроля сварных соединений, использующего подобный принцип, излучатель вырезается таким образом, чтобы плоскость колебания по отношению к толщине рассматриваемого сварного шва излучала продольные волны. Если требуется оценить неравномерность структуры соединения на значительной площади, то используют пластину, вырезанную в перпендикулярном направлении. Тогда с приложением напряжения она будет излучать поперечные волны, которые будут равномерно распространяться в толще исследуемого соединения.

    Корпуса пьезоизлучателей изготавливают из керамики, что повышает уровень требований к условиям работы ультразвуковых дефектоскопов для контроля сварных соединений. В частности, им противопоказаны удары и сотрясения корпуса.

    Магнитострикционные преобразователи ультразвуковых дефектоскопов

    Магнитоскрикция заключается в деформации ферромагнитной детали, которая размещена в силовом магнитном поле. Длина этой детали изменяется в зависимости от вида силовых линий магнитного поля, её материала, температуры и степени намагниченности. В ультразвуковых дефектоскопах используются ферромагнетики, относительное изменение длины которых – не менее 10 -5 .

    Работают такие преобразователи следующим образом. В приборе создаётся переменное электромагнитное поле, при этом ферромагнитный стержень начинает совершать колебания удвоенной амплитуды. Поскольку линейная деформация магнитостриктора не зависит от направления силовых линий магнитного поля, то подмагничивания такого элемента не требуется.

    Как и пьезоэффект, магнитострикция обратима. В качестве излучателей применяются химически чистый никель, а также его сплавы с медью или железом. Минимальная частота, при которой обнаружение дефектов сварных конструкций окажется эффективным, составляет 60 Гц, хотя в приборах обычно реализуются частоты от 300 Гц.

    Магнитострикционные преобразователи конструктивно проще, однако уступают пьезогенераторам по параметрам минимальной площади диагностируемой зоны: она должна быть достаточно большой. Кроме того, такие ультразвуковые дефектоскопы теряют свою чувствительность при обследовании только что полученных сварных швов. Ещё одним ограничением магнитострикционных источников получения ультразвуковых волн считается их повышенная энергоёмкость. Зато они более компактны, а потому применимы в стеснённых для диагностики условиях.

    Промышленные конструкции ультразвуковых дефектоскопов для контроля сварных соединений

    Для измерения необходимы:

    1. Сам регистрирующий прибор.
    2. Искательная головка (передатчик).
    3. Контрольная головка (приёмник).
    4. Устройство отображения (монитор или цифровой дисплей).

    Напряжение от источника переменного тока (аккумулятор или генератор — для стационарных дефектоскопов) подаётся на излучатель, а от него ультразвуковые волны передаются в исследуемый сварной шов. Интенсивность ослабления исходного сигнала определяет степень неоднородности шва. Возникающая амплитуда сигнала далее усиливается и регистрируется, при этом возможна как визуальная оценка качества, так и запись результатов на цифровой носитель информации.

    Перед использованием ультразвуковой дефектоскоп для контроля сварных соединений подлежит юстировке. Как образец, используется сварной стык с идеальными параметрами качества, при этом отклонение шкалы/стрелки должно быть максимально возможным.

    В качестве приёмника дефектоскопы некоторых фирм используют преобразователь изображения. При этом фиксируется фактическое значение плотности энергии звукового поля за швом. Этот способ получения конечной информации более нагляден, но требует определённого пространства за исследуемым соединением.

    Излучение звуковой энергии в ультразвуковых дефектоскопах может быть выполнено двумя способами – резонансным или импульсным. В первом случае излучение ультразвука происходит непрерывно, а применяемые частоты находятся в диапазоне 1…12,5 кГц. При импульсном методе используется сигнал (эхо) звуковой волны, который отражается от дефектной зоны или задней поверхности сварного стыка. Подача звукового импульса происходит через 1…2 мкс, чем обеспечивается высокая точность сканирования объекта. Конечный импульс отражается на мониторе, и может регистрироваться цифровым устройством записи. Энергопотребление дефектоскопов такого типа значительно меньше.

    Читайте также  Какими физическими параметрами определяются режимы контактной сварки?

    Признанным мировым лидером в производстве переносных дефектоскопов для контроля сварных соединений, цена которых вполне соответствует их качеству, считаются аппараты от компании SONATEST (Франция). Данные приборы отличаются компактностью и точностью получаемых данных. Например, применяемые для тестирования качества сварки труб, листовых материалов и т.п. ультразвуковые дефектоскопы линейки Harfang Veo характеризуются следующими эксплуатационными достоинствами:

    • большим диапазоном регулировки направления и силы излучения, а также скорости диагностики;
    • точностью измерения;
    • воспроизводимостью результатов, включая и 3D-моделирование структуры сварного шва;
    • удобствами настройки;
    • возможностью подключения для целей сканирования нескольких источников;
    • ёмкими батареями, допускающими замену непосредственно в ходе измерений.

    Дефектоскопия сварных швов

    Некачественные соединения могут стать причиной аварий. Трубопроводы, детали, испытывающие динамическую нагрузку, швы, работающие на излом, не должны содержать шлака, раковин, непроваров. Методы дефектоскопии сварных швов относятся к неразрушающей диагностике. Они используются для выявления внутренних, невидимых дефектов в металле – несплошностей, снижающих прочность соединения.

    Разработано 10 методов диагностики, все они имеют достоинства и недостатки, ограничения. Дефектоскопией сварных швов проверяют качество работы сварщиков, выявляют нарушения технологии. Используют методы диагностики металла для входного, промежуточного и сдаточного контроля.

    Принцип дефектоскопии

    Диагностика сварных соединений включает разные методы исследований, основанных на физических свойствах металлов, структурных превращениях на границе фазового перехода. На исследуемые участки воздействуют радиоволнами, ультразвуком, магнитным электростатическим полем, красителями. Разнородные структуры по-разному воспринимают воздействие. Принципы выявления дефектов подбирают под металл. К примеру, немагнитящиеся легированные стали, цветные металлы нельзя проверить в магнитном поле. Эхолокация неэффективна для крупнозернистых структур.

    Дефектоскопией сварных соединений называют комплекс методов контроля качества визуально или с использованием специальной аппаратуры для выявления дефекта. Принцип дефектоскопов, методика диагностики утверждаются стандартами. По результатам дефектоскопии определяется прочность (эксплуатационная надежность) сварных швов после завершения работы.

    Каждый сварщик несет ответственность за соблюдение технологии.

    Преимущества и недостатки

    • низкая трудоемкость исследований, контролирует соединения один человек в течение нескольких минут;
    • безопасность проведения контроля, только радиационная диагностика предполагает влияние вредных факторов;
    • разнообразие контролирующих приборов, для основных методов дефектоскопии выпускают мобильные дефектоскопы;
    • разнообразие контролируемых объектов: проверяют плоские, объемные детали, трубы;
    • контроль швов, произведенных любым видом сварочного аппарата.
    • у каждого из методов существуют определенные ограничения по применению, ввиду выявляемых изъянов;
    • необходимость использования специальных реагентов, расходных материалов;
    • приходится специально подготавливать исследуемые поверхности;
    • контролируемые фрагменты после диагностики необходимо дополнительно обрабатывать антикоррозионными средствами, при снятии окалины, оксидной пленки защитные свойства металла ухудшаются.

    Основные методы дефектоскопии

    Дефекты соединений бывают двух типов:

    • видимые выявляют при визуализации;
    • скрытые (внутренние) определяют дефектоскопией сварных швов.

    Существуют разрушающие методы контроля, они необходимы при разработке технологии сварного соединения. Зону фазового перехода рассекают, рассматривают структуру металла под микроскопом.

    Неразрушающую дефектоскопию сварных швов создали для определения качества сварки. Металл проверяют на проницаемость, однородность, пользуясь современными методами и приборами.

    Визуальный осмотр

    Проверка сварных швов производится на месте. Это самый часто применяемый способ контроля. Анализируя состояние шовного валика, дефектоскопией выявляют непровары. Они проявляются неравномерностью наплавочного слоя, трещинами, пористостью. Для точности результата до осмотра со шва снимают окалину, протирают поверхность валика растворителем (техническим метанолом). Затем производят травление металла 10% азотной кислотой, она растворяет оксидную пленку. Остатки кислоты снимают спиртом.

    На матовой поверхности хорошо видны внешние дефекты, сопутствующие структурным изменениям в зоне термовлияния. Для визуального исследования используют лупу, микроскоп.

    Магнитная

    Этот метод дефектоскопии подходит только для углеродистых и низколегированных сталей, способных намагничиваться. На контролируемые участки воздействуют циркулярным или продольным полем. Используют электрические или постоянные магниты. В местах дефектов происходит искажение электромагнитных линий.

    Существует два метода фиксации рассеяния поля:

    1. Порошковая дефектоскопия основана на свойствах частиц скапливаться над местами структурных повреждений. Порошок рассыпают в сухом или влажном виде, для снижения трения, увеличения подвижности порошка используют масло или керосин. Допустимо применение магнитогуммированной пасты и суспензий. Вид магнитящего состава выбирают под тип стали. Снизу контролируемого участка сварного шва устанавливают магнит. Над трещинами, пустотами опилки металла под воздействием искаженного поля собираются в валики, комкуются.
    2. Вместо порошка используют ферромагнитную ленту, ее накладывают на шов, плотно фиксируют. Во время дефектоскопии на информационном носителе записываются электроволновые изменения. Прибор их считывает подобно магнитофону. Магнитно-порошковые дефектоскопы улавливают значительные несплошности, снижающие прочность соединений.

    Ультразвуковая

    Процедура ультразвуковой дефектоскопии регламентирована ГОСТ Р 55724-2013. Метод основан на способности звуковых волн отражаться от границы раздела сред различной плотности. Применяется для мелкозернистых металлов. Фиксирует крупные зерна, разрастающиеся в местах фазового перехода при любом способе сварки.

    Приборы контроля трубопроводов и объемных деталей со стыковыми, тавровыми, нахлесточными и угловыми сварными швами бывают разных типов:

    • импульсные дефектоскопы фиксируют интенсивность и время прохождения отраженных волн;
    • теневые определяют снижение энергии или смещение фазы ультразвуковых волн, огибающих дефект;
    • зеркально-теневые менее чувствительные, предназначены для обнаружения структурных уплотнений и несплошностей;
    • импедансные необходимы для исследования сварных тонкостенных деталей, труб.

    Ультразвук генерирует наклонный преобразователь. Его перемещают вдоль шва вращательными движениями. Стационарные установки контроля используют в лаборатории. Для работы на местах используют мобильные дефектоскопы. Они определяют место расположения и характер дефекта. Ультразвуковой метод контроля не отличается высокой точностью. Чувствительность дефектоскопов определяется минимальными размерами эталонов (отражателей). Для расшифровки результатов необходима специальная подготовка.

    Радиационная

    Такая дефектоскопия основана на способности металлов поглощать рентгеновские лучи. По сути, это рентген. Изображение, зафиксированное на пленке, расшифровывают негатоскопом. Метод характеризуется высокой точностью. Выявляет непровары, трещины, шлаковые включения и другие дефекты, не обнаруженные дефектоскопами другого типа. Дает представление о виде, характере и расположении несплошностей. Используется только в лабораторных условиях. Установки необходимо экранировать, так как контролеры подвергаются воздействию излучения.

    Метод утвержден ГОСТ 23055-78. Дефектограмма не определяет:

    • несплошности, размером меньше двойной чувствительности, расположенные по направлению лучей;
    • дефекты: менее 0,1 мм при толщине заготовок 40 м, (0,2 – от 40 до 100; 0,3 – от 100 до 150);
    • непровары и трещины, совпадающие с острыми углами, посторонними деталями.

    Капиллярная

    Метод капиллярной дефектоскопии применяется для любых плотных материалов (цветных и черных металлов, пластика, керамики, стекла). Пенетранты (цветовые индикаторы) обладают хорошей проницаемостью, заполняют даже самые мелкие пустоты. Они производятся на водной или органической основе (масло, керосин).

    Капиллярные дефектоскопы для проверки сварных швов разделяют по способу информации:

    • цветные (хроматические), используются жидкости с устойчивой контрастной окраской, чаще красные;
    • яркостные (ахроматические), определяют интенсивность цвета, характеризующие глубину дефекта;
    • люминесцентные, используемые жидкости содержат вещества, видимые в ультрафиолетовом излучении;
    • люминесцентно-цветные, пенетранты видимы по всему спектру.

    Чувствительность контролирующих устройств:

    • I класс – выявляются дефекты швов от 0,1 мм до микрона;
    • II класс – до 0,5 мкм.

    Пенетранты выпускают жидкостные и в аэрозолях. В комплекте с ними идут очистители, проявители, атлас дефектов (эталонные фотографии, по которым анализируют получившийся рисунок).

    Цветная дефектоскопия проводится в соответствии с ГОСТ 18442-80. Процесс состоит из пяти стадий:

    • предварительная очистка исследуемой поверхности химическим способом или паром с последующей сушкой;
    • нанесение индикаторного пенетранта любым возможным способом;
    • удаление излишек красителя через определенный временной интервал, указанный в инструкции (от 5 до 20 минут в зависимости от проницаемости жидкости);
    • обработка поверхности проявителем, меняющим или усиливающим цвет пенетранта;
    • анализ полученного рисунка.

    Выбор метода

    Учитывают основные параметры исследуемых швов:

    • физические характеристики;
    • толщину и габариты заготовок;
    • состояние поверхности: для ультразвука необходима зачистка с контактной смазкой, для магнитно-резонансного метода – проводят осадку шва (снимают поверхностные напряжения), для капиллярного исследования требуется идеально ровная и очищенная поверхность.

    При выборе метода дефектоскопии необходимо учитывать:

    • размеры допустимых дефектов, по техническим условиям подбирают чувствительность приборов;
    • условия проведения исследований.

    Если важно выявить объемные дефекты, пустоты – надежнее провести радиационный контроль. Трещины и непровары определяют ультразвуком, магнитным полем. Дефекты, выходящие на поверхность, выявляют капиллярным методом.

  • Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: