Гидравлические сопротивления запорной арматуры

Гидравлическое сопротивление

Гидравлическое сопротивление или гидравлические потери – это суммарные потери при движении жидкости по водопроводящим каналам. Их условно можно разделить на две категории:

Потери трения – возникают при движении жидкости в трубах, каналах или проточной части насоса.

Потери на вихреобразование – возникают при обтекании потоком жидкости различных элементов. Например, внезапное расширение трубы, внезапное сужение трубы, поворот, клапан и т. п. Такие потери принято называть местными гидравлическими сопротивлениями.

Содержание статьи

Коэффициент гидравлического сопротивления

Гидравлические потери выражают либо в потерях напора Δh в линейных единицах столба среды, либо в единицах давления ΔP:

где ρ — плотность среды, g — ускорение свободного падения.

В производственной практике перемещение жидкости в потоках связано с необходимостью преодолеть гидравлическое сопротивление трубы по длине потока, а также различные местные сопротивления:
Поворотов
Диафрагм
Задвижек
Вентилей
Кранов
Различных ответвлений и тому подобного

На преодоление местных сопротивлений затрачивается определенная часть энергии потока, которую часто называют потерей напора на местные сопротивления. Обычно эти потери выражают в долях скоростного напора, соответствующего средней скорости жидкости в трубопроводе до или после местного сопротивления.

Аналитически потери напора на местные гидравлические сопротивления выражаются в виде.

где ξ – коэффициент местного сопротивления (обычно определяется опытным путем).

Данные о значении коэффициентов различных местных сопротивлений приводятся в соответствующих справочниках, учебниках и различных пособиях по гидравлике в виде отдельных значений коэффициента гидравлического сопротивления, таблиц, эмпирических формул, диаграмм и т.д.

Исследование потерь энергии (потери напора насоса), обусловленных различными местными сопротивлениями, ведутся уже более ста лет. В результате экспериментальных исследований, проведенных в России и за рубежом в различное время, получено огромное количество данных, относящихся к разнообразнейшим местным сопротивлениям для конкретных задач. Что же касается теоретических исследований, то им пока поддаются только некоторые местные сопротивления.

В этой статье будут рассмотрены некоторые характерные местные сопротивления, часто встречающиеся на практике.

Местные гидравлические сопротивления

Как уже было написано выше, потери напора во многих случаях определяются опытным путем. При этом любое местное сопротивление похоже на сопротивление при внезапном расширении струи. Для этого имеется достаточно оснований, если учесть, что поведение потока в момент преодоления им любого местного сопротивления связано с расширением или сужением сечения.

Гидравлические потери на внезапное сужение трубы

Сопротивление при внезапном сужении трубы сопровождается образованием в месте сужения водоворотной области и уменьшения струи до размеров меньших, чем сечение малой трубы. Пройдя участок сужения, струя расширяется до размеров внутреннего сечения трубопровода. Значение коэффициента местного сопротивления при внезапном сужении трубы можно определить по формуле.

Значение коэффициента ξвн. суж от значения отношения (F2/F1)) можно найти в соответствующем справочнике по гидравлике.

Гидравлические потери при изменении направления трубопровода под некоторым углом

В этом случае вначале происходит сжатие, а затем расширение струи вследствие того, что в месте поворота поток по инерции как бы отжимается от стенок трубопровода. Коэффициент местного сопротивления в этом случае определяется по справочным таблицам или по формуле

ξ поворот = 0,946sin(α/2) + 2.047sin(α/2) 2

где α – угол поворота трубопровода.

Местные гидравлические сопротивления при входе в трубу

В частном случае вход в трубу может иметь острую или закругленную кромку входа. Труба, в которую входит жидкость, может быть расположена под некоторым углом α к горизонтали. Наконец, в сечении входа может стоять диафрагма, сужающая сечение. Но для всех этих случаев характерно начальное сжатие струи, а затем её расширение. Таким образом и местное сопротивление при входе в трубу может быть сведено к внезапному расширению струи.

Если жидкость входит в цилиндрическую трубу с острой кромкой входа и труба наклонена к горизонту под углом α, то величину коэффициента местного сопротивления можно определить по формуле Вейсбаха:

ξвх = 0,505 + 0,303sin α + 0,223 sin α 2

Местные гидравлические сопротивления задвижки

На практике часто встречается задача расчета местных сопротивлений, создаваемых запорной арматурой, например, задвижками, вентилями, дросселями, кранами, клапанами и т.д. В этих случаях проточная часть, образуемая разными запорными приспособлениями, может иметь совершенно различные геометрические формы, но гидравлическая сущность течения при преодолении этих сопротивлений одинакова.

Гидравлическое сопротивление полностью открытой запорной арматуры равно

ξвентиля = от 2,9 до 4,5

Величины коэффициентов местных гидравлических сопротивлений для каждого вида запорной арматуры можно определить по справочникам.

Гидравлические потери диафрагмы

Процессы, происходящие в запорных устройствах, во многом похожи на процессы при истечении жидкости через диафрагмы, установленные в трубе. В этом случае также происходит сужение струи и последующее её расширение. Степень сужения и расширения струи зависит от ряда условий:
режима движения жидкости
отношения диаметров отверстия диафрагмы и трубы
конструктивных особенностей диафрагмы.

Для диафрагмы с острыми краями:

Местные гидравлические сопротивления при входе струи под уровень жидкости

Преодоление местного сопротивления при входе струи под уровень жидкости в достаточно большой резервуар или в среду, не заполненную жидкостью, связано с потерей кинетической энергии. Следовательно, коэффициент сопротивления в этом случае равен единице.

Видео о гидравлическом сопротивлении

На преодоление гидравлических потерь затрачивается работа различных устройств (насосов и гидравлических машин)

Для снижения влияния гидравлических потерь рекомендуется в конструкции трассы избегать использования узлов способствующих резким изменениям направления потока и стараться применять в конструкции тела обтекаемой формы.

Даже применяя абсолютно гладкие трубы приходится сталкиваться с потерями: при ламинарном режиме течения(по Рейнольдсу) шероховатость стенок не оказывает большого влияния, но при переходе к турбулентному режиму течения как правило возрастает и гидравлическое сопротивление трубы.

Местные потери напора

На этой странице собрана информация по коэффициентам местного сопротивления, которые могут быть использованы для расчета местных потерь напора в задачах инженерной практики

Задвижка

При расчете трубопроводных систем коэффициент сопротивления открытой задвижки принимается ζзадв = 0,1 — 0,2. Если задвижка прикрыта на определенную величину, то коэффициент сопротивления напрямую зависит от степени закрытия. Ниже представлена таблица зависимости коэффициента сопротивления задвижки от степени закрытия. Чем больше степень закрытия — тем больше коэффициент сопротивления.

Степень закрытия
(d-h)/d
1/8 2/8 3/8 1/2 5/8 3/4 7/8
ζзадв 0,07 0,26 0,81 2,06 5,52 17,0 97,8

Шаровой кран

Коэффициент сопротивления шарового крана зависит от его диаметра (условного прохода). Ниже представлена таблица с коэффициентами. Диаметр крана приведен в дюймах (т.к. чаще всего он соединяется с трубами на резьбе), но ниже дан соответствующий диаметр в мм

D, дюймы 1/2 3/4 1 1 1/4 1 1/2 2
D, мм 15 20 25 32 40 50
ζ 0,26 0,13 0,12 0,11 0,103 0,101

По правилам русского языка, в отношении, в данном случае, запорной арматуры, элементом которой является шар, правильное произношение и написание будет шаровой кран, а не шаровый кран. Шаровый означает цвет (дымчато-серый)

Вентиль

Коэффициент местного сопротивления вентиля для расчетов может быть принят равным 6

ζвент = 6

Поворотный затвор

Коэффициент сопротивления поворотного затвора для технических расчетов может быть принят равным 0,15 — 0,25

Читайте также  Сделать калитку из профильной трубы с аркой

Обратный клапан

Коэффициент сопротивления обратного клапана для технических расчетов может быть принят равным 1,7

Плавный поворот

Коэффициент сопротивления при плавном повороте потока зависит от угла поворота ( α ) . Для стандартных отводов на 90 о коэффициент ζ = 0,5 — 0,6. Коэффициент сопротивления при повороте на произвольный угол ( α ) может быть найден по формуле: ζпов = ζ90·α/90

Резкий поворот

Коэффициент местного сопротивления при резком повороте зависит от угла поворота ( α ). Эта зависимость представлена в табличной форме ниже

α 20 30 45 60 75 90 110 130 150 180
ζпов 0,13 0,16 0,32 0,56 0,81 1,19 1,87 2,59 3,20 3,60

Внезапное расширение

Потеря напора может быть рассчитана по скорости до (v₁) или после изменения диаметра (v₂)

Внезапное сужение

Потеря напора на внезапное сужение может быть также рассчитана по скорости (v₂) после сужения по формуле ниже:

Плавное расширение (переход расширяющийся)

Коэффициент местного сопротивления для стандартного расширяющегося перехода может быть принят ζпер.расш. = 0,25

! При вычислении потери напора скорость берется по меньшему диаметру !

Плавное сужение (переход сужающийся)

Коэффициент местного сопротивления для стандартного сужающегося перехода может быть принят ζпер.суж. = 0,1

При вычислении потери напора скорость также берется по меньшему диаметру

Обратный клапан с сеткой

При вычислении потерь напора на обратном клапане с сеткой, который устанавливается в определенных случаях на всасывающем трубопроводе от насоса для забора воды из водных объектов, коэффициент местного сопротивления может быть принят: ζобр.кл = 5,0 – 10,0

Вход в трубу

Коэффициент местного сопротивления при входе в трубу из резервуара зависит от того, как «оформлено» место входа. Скругленные кромки (вариант Б) уменьшают гидравлическое сопротивление. Если труба заведена вовнутрь (вариант Г), то коэффициент сопротивления, напротив, больше.

Вход в трубу с поворотом

Коэффициент сопротивления при входе в трубу из резервуара ζвх.α также зависит от угла поворота α. Чем больше угол — тем больше местное сопротивление.

α 90 75 60 45
ζвх.α 0,50 0,59 0,70 0,81

Выход в резервуар под уровень жидкости

Потери напора при выходе из трубопровода в резервуар под уровень жидкости равняются скоростному напору потока в месте выхода, т.е. коэффициент сопротивления ζвых = 1

Потери, связанные с течением жидкости через тройники

Гидравлическое сопротивление труб

Гидравлическое сопротивление – это сопротивление движению потока рабочей среды, которое оказывается со стороны трубопроводной системы и оценивается количеством потерянной удельной энергии, безвозвратно расходуемой на работу сил трения. При этом гидропотери могут возникать в результате:

  • Трения по длине. Даже на прямых отрезках трубопровода создаётся противодействие движущемуся потоку. Это возникает на фоне появления сил вязкого трения. Причём с увеличением длины прямолинейного участка повышается сопротивление внутри трубопровода на данном участке.
  • Местных факторов. Это могут быть повороты, различные сужения, тройники, краны и прочее.
  • Расчет гидравлического сопротивления и его роль
  • Коэффициент гидравлического сопротивления трубы
  • Коэффициент гидравлического сопротивления различных труб
  • Трубы с низким коэффициентом гидравлического сопротивления
  • Вопросы, комментарии, отзывы

Расчет гидравлического сопротивления и его роль

Любая трубопроводная коммуникация имеет не только прямолинейные участки, но и повороты, ответвления, для создания которых используются различные фитинги. А для регулирования потока рабочей среды устанавливается запорная арматура. Всё это создаёт сопротивление, поэтому очень важно перед тем, как приступать к монтажу трубопровода, необходимо выполнить ряд расчётов, в том числе определить гидравлическое сопротивление. Это позволит в будущем сократить теплопотери и, соответственно, избежать лишних энергозатрат.

Гидравлический расчёт выполняется с целью:

  • Вычисления потерь давления на конкретных отрезках системы отопления;
  • Определения оптимального диаметра трубопровода с учётом рекомендованной скорости перемещения рабочего потока;
  • Расчёта тепловых потерь и величины наименьшего давления в трубопроводе;
  • Правильного выполнения увязки параллельно расположенных гидравлических ветвей и закреплённой на ней запорной арматуры.

Во время движения по замкнутому контуру рабочему потоку приходится преодолевать определённое гидравлическое сопротивление. Причём с увеличением его значения, должна увеличиваться мощность насоса. Только правильные расчёты помогут выбрать оптимальный вариант насоса. Нет смысла покупать слишком мощное оборудования для трубопроводов с низким гидравлическим сопротивлением, ведь, чем больше мощность, тем выше энергозатраты.

А если мощность будет, наоборот, недостаточной, то насосное оборудование не сможет обеспечить достаточный напор теплоносителя, что приведёт к увеличению тепловых потерь.

Коэффициент гидравлического сопротивления трубы

Это безмерная величина, показывающая, каковы потери удельной энергии.

Ламинарное перемещение рабочего потока

При ламинарном (равномерном) перемещении рабочей среды по трубопроводу круглого сечения потери давления по длине вычисляется по формуле Дарси-Вейсбаха:

— потери давления по длине;

— коэффициент гидравлического сопротивления;

v – скорость движения рабочей среды;

g – ускорение силы тяжести;

d – диаметр трубопроводной магистрали.

Практически определено, что на коэффициент гидравлического сопротивления непосредственное влияние оказывает число Рейнольдса (Re) – безмерная величина, которая характеризует поток жидкости и выражается отношением динамического давления к касательному напряжению.

Если Re меньше, чем 2300, то для расчёта применяется формула:

Для трубопроводов в форме круглого цилиндра:

Для трубопроводных коммуникаций с другим (не круглым) сечением:

Где А=57 – для квадратных труб.

Турбулентное течение рабочего потока

При турбулентном (неравномерном, беспорядочном) перемещении рабочего потока коэффициент сопротивления вычисляют опытным путём, как функцию от Re. Если необходимо определить коэффициент гидравлического сопротивления для магистрали круглого сечения с гладкими поверхностями при

, то для расчёта применяется формула Блаузиуса:

В случае турбулентного перемещения рабочей среды на величину коэффициента трения влияет число Рейнольдса (характер течения) и насколько гладкая внутренняя поверхность трубопроводной коммуникации.

Коэффициент местного сопротивления

Это безмерная величина, которая устанавливается экспериментальным путём с помощью формулы:

– коэффициент местного сопротивления;

– потеря напора;

– отношение скорости потока к ускорению силы тяжести – скоростной поток.

При неизменной скорости перемещения рабочей среды по всему сечению применяется формула:

, где

– энергия торможения.

Запортная арматура: применение, виды, стандартизация

Запорная арматура является неотъемлемой частью трубопроводных систем различного назначения. Она необходима для перекрытия потока рабочей среды. Функциональные элементы арматуры дают возможность плавного изменения параметров с фиксацией площади просвета от положения «открыто» до позиции «закрыто» с определенной степенью герметичности.

Применение запорной арматуры

Элементы запорной арматуры используются в инженерных системах общетехнического назначения и для работы в специальных условиях. Допускается монтаж на трубопроводы со следующими типами рабочей среды:

  • водой;
  • паром;
  • газами;
  • нефтью и нефтепродуктами;
  • химическими веществами, в том числе агрессивными (специальное исполнение).

Основными сферами применения являются предприятия жилищно-коммунального комплекса, энергосистемы, химическая, пищевая промышленность, сельское хозяйство, горнодобывающая, металлургическая, другие структуры.

В производстве запорной арматуры используются следующие материалы:

  • углеродистые и коррозионностойкие стали;
  • чугун;
  • титан;
  • цветные сплавы (латунь, бронза).

Виды запорной арматуры

Запорные устройства, перекрывающие поток рабочего вещества в трубе, классифицируются по способу остановки потока.

  • Задвижка. Ее запирающий элемент движется перпендикулярно потоку рабочей среды.
  • Вентиль. Ее запирающий элемент перемещается вдоль движения потока рабочей среды.
  • Шаровый кран. Ее запирающий элемент поворачивается вокруг оси устройства перпендикулярно потоку рабочей среды.
Читайте также  Ручная вальцовка профильной трубы

Задвижки

Изделия данного типа используются на технологических линиях и в транспортных трубопроводах промышленного назначения. Задвижка изготавливается в следующих исполнениях:

  • с ручным управлением;
  • с электроприводом в стандартном и взрывоопасном исполнении;
  • с гидроприводом.

На запорной арматуре большого диаметра при ручном управлении устанавливается редуктор с червячной, конической или цилиндрической передачей для уменьшения усилия на маховик. Если шпиндель задвижки расположен горизонтально, электропривод монтируют на опоре, червяк и роликоподшипник густо смазывают маслом.

  • условное давление, Р, МПа (кгс/кв. см): 0,16 (1,6) – 25,0 (250);
  • диаметр условного прохода, D, мм: 50–2000;
  • температура рабочей среды, К (°С): +213 (-60) − +838 (+565).

Классификация задвижек

По конструкции шпинделя запорной арматуры различают задвижки:

  • с невыдвижным (вращаемым) шпинделем. При открытии и закрытии элемент совершает только вращательные движения, резьба контактирует с рабочим потоком;
  • с выдвижным шпинделем. Запорный элемент движется поступательно, гайка и ходовая резьба вынесены из полости задвижки.

По конструкции затвора:

  • клиновые задвижки. Уплотнительные кольца в конструкции расположены под углом. Арматура может иметь цельный упругий или жесткий клин либо двухдисковый составной запирающий элемент;
  • параллельные задвижки (шиберные). Уплотнительные кольца расположены параллельно друг другу. Затвор запорного устройства может выполняться в форме листа или диска либо в виде двух дисков с распорным клином или пружиной. Параллельные задвижки чаще всего отливаются из чугуна, используются в системах транспорта газа и воды. Модели с выдвижным шпинделем монтируются на трубы с диаметром не менее 50 мм.

Особенности задвижек

Арматура имеет простую конструкцию, характеризуется неприхотливостью в эксплуатации, высокой степенью ремонтопригодности. Функционирует в позициях «открыто» и «закрыто». При частой фиксации затвора в промежуточном положении возникает вибрация, что приводит к разрушению задвижки.

Вентили

Вентилем называется устройство, в котором движение запирающего элемента производится посредством ходовой гайки и шпинделя (резьбовой пары). Арматура обладает свойством самоторможения, поэтому запорный орган можно оставлять в любом промежуточном положении.

Основные характеристики вентилей:

  • материал основных деталей − серый чугун марки не ниже СЧ18–36;
  • диаметр условного прохода, D (мм): 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200;
  • тип присоединения к трубопроводу: фланцевое или муфтовое;
  • материал уплотнений затвора: фторопласт-4, кислотощелочестойкая резина средней твердости;
  • рабочая среда: пар, вода;
  • максимальная температура в трубопроводе, К (°С) − 489 (225).

Классификация вентилей

По конструкции корпуса:

  • проходные. Вентили такого типа монтируются на прямолинейных участках трубопровода, где не допускается уменьшение потока рабочей среды. Проходная арматура имеет большой вес и высокое гидравлическое сопротивление;
  • прямоточные. Патрубки такого запорного вентиля расположены противоположно друг другу. Корпус более компактный, но длинный и тяжелый. Гидравлическое сопротивление ниже, чем у проходных моделей;
  • смесительные трехходовые. Такие запорные вентили могут иметь три или четыре присоединительных патрубка. Устройства используются для соединения нескольких потоков с разными рабочими средами: газообразными и жидкими. Смесительные вентили используют для стабилизации рабочей температуры, процесса разжижения, дозирования реагентов и т. д.;
  • угловые. Запорные вентили этого типа имеют перпендикулярно расположенные присоединительные патрубки, монтируются в местах поворота магистрали.

По типу регулирующего элемента:

  • односедельные. Клапан выполнен в виде иглы с переменным по длине сечением. Запирающий элемент может крепиться к шпинделю или быть с ним одним целым. Клапан монтируется в корпусе посредством резьбы, но не обеспечивает герметичность при закрывании. Вентиль подходит для работы в системах с небольшим потоком газа;
  • двухседельные. Такие вентили разгружают шток по оси при разности давлений на входе и выходе. Слабый подъем регулирующего элемента не обеспечивает достаточную плотность запирания.

По степени герметизации:

  • сальниковые. Они имеют простую конструкцию, невысокую стоимость. Устройство такого вентиля предусматривает возможность смены сальника или донабивки;
  • сильфонные. Предназначаются для работы с опасными (токсическими, взрывоопасными) веществами, когда утечка недопустима. Уплотнение отличается высокой надежностью, но не подлежит ремонту.

Особенности вентилей

Вентиль имеет достаточно простую конструкцию, характеризуется надежностью и удобством в использовании. Недостаток такой запорной арматуры – высокое гидросопротивление, которое приводит к образованию застойных зон.

Шаровые краны

Кран представляет собой изделие, в которой сферический запирающий элемент поворачивается вокруг оси, располагающейся произвольно по отношению к движению рабочего потока. Устройство дает возможность не только полностью перекрывать поток, но и регулировать его движение. Материал изготовления шаровых кранов ГОСТом не регламентирован, его устанавливает изготовитель для каждой конкретной модели. То же самое относится к рабочим средам, параметрам и применимости запорной арматуры. Основной характеристикой изделий является номинальный диаметр (DN). Для шаровых кранов этот показатель составляет от 10 до 500 мм.

Конструктивные требования

Шаровые краны должны открываться поворотом шпинделя по часовой стрелке, если в конструкторской документации не указано обратное. Для крайних положений предусмотрены ограничители поворота пробки. Расположение рукоятки должно соответствовать направлению проходного канала шара. В конструкции запорного устройства предусматривают также элемент, обеспечивающий непрерывную электропроводимость. Снятие статического напряжения осуществляется только искусственным путем.

Классификация шаровых кранов

Эту запорную арматуру классифицируют по типу проточной части корпуса, выделяя:

  • полнопроходные краны,
  • краны с зауженным проходом.

По типу присоединения к трубопроводу:

  • муфтовые,
  • фланцевые,
  • цапковые,
  • штуцерно-торцовые,
  • по приварку.

По состоянию крана с приводом:

  • нормально открытые (НО),
  • нормально закрытые (НЗ).

По типу управления:

  • с ручным приводом;
  • с механизированным приводом (гидро-, электро-, пневмоприводом);
  • с механизированным приводом и ручным дублером.

По количеству и типу соединяемых патрубков:

  • проходные;
  • угловые;
  • смесительные (с тремя и более патрубками).

Номенклатура шаровых кранов на некоторых заводах включает изделия для монтажа в грунт. Такие модели имеют высокую вентильную ось, которая вместе с маховиком выводится на поверхность земли.

Область применения шаровых кранов

Арматура данного типа широко используется в системах питьевого водоснабжения, отопления, в пожарных гидрантах, пневмосистемах, трубопроводах, транспортирующих масла, пищевые растворы, нефтепродукты, химически агрессивные вещества и т. д. Простая конструкция и легкое использование позволяют устанавливать их не только на промышленных объектах, но и в жилых домах.

Особенности запорных кранов

Шаровые краны неприхотливы в эксплуатации, имеют компактные размеры и малый вес, не требуют технического обслуживания. Для перекрывания потока не приходится долго вращать ручку шарового крана – достаточно повернуть ее на 90°.

В отличие от регулирующих моделей шаровые краны предназначены для перекрывания потока рабочей жидкости, то есть имеют два основных положения: «открыто» и «закрыто». Возможно плавное изменение скорости движения среды, но оставлять пробку в промежуточном положении нежелательно. Под давлением жидкости стачивается острая кромка крана и нарушается герметичность.

Стандартизация запорной арматуры

Основные параметры всех типов запорной арматуры регламентированы ГОСТом, поэтому при изготовлении на корпусы устройств наносят соответствующую маркировку. Цифровое и/или буквенное обозначение может содержать информацию о заводе изготовителе, материале изделия, диаметре условного прохода, допустимых рабочих параметрах и т. д. Маркировка ускоряет процесс выбора, а стандартизация размеров упрощает монтаж.

ООО «НЕМЕН» — официальный представитель крупнейших российских и европейских заводов в области промышленного оборудования.

Гидравлическое сопротивление: виды и коэффициенты

Местные гидравлические сопротивления — зачастую причина кавитации. Как рассчитывать коэффициенты разных сопротивлений? Какова зависимость между сопротивлениями и кавитацией?

Читайте также  Уход за духовой трубой

Одно из основных понятий в гидравлике — гидравлические потери (сопротивление). Речь идет о потерях, которые наблюдаются при движении жидкости по водопроводящим каналам.

Условно гидравлические потери можно разделить на две группы:

  • потери трения. Представляют собой следствие движения жидкости в проточной части насоса, каналах или трубах;
  • потери на вихреобразовании. Обусловлены обтеканием потоком жидкости разнообразных деталей, конструкций, препятствий. Это может быть клапан, поворот или сужение трубы. Потери этого типа обычно называют местными гидравлическими сопротивлениями.

Исследования потерь энергии потока (потерь напора насосов), обусловленных местными сопротивлениями, проводятся уже не одно десятилетие. В разное время в России и за рубежом проводились различные экспериментальные исследования, которые позволили получить множество данных относительно разных местных сопротивлений. В теории ученые продвинулись не так далеко: до сих пор не удается создать универсальные формулы, которые можно было бы применять с любыми типами локальных сопротивлений, — пока речь идет о некоторых местных сопротивлениях.

Коэффициент гидравлического сопротивления: что это такое и как высчитывается

Выражаться гидравлические потери могут по-разному — в единицах давления или линейных единицах столба жидкости, потерях напора.

Общая формула потери напора выглядит так:

где △P — потери в единицах давления,

p — плотность среды,

g — ускорение свободного падения.

В сфере промышленности, в производственной практике перемещение жидкостей в потоках неразрывно связано с необходимостью преодоления гидравлического сопротивления трубы по всему пути потока. Кроме этого, гидравлические потери обуславливаются местным сопротивлением встречающихся на пути ответвлений и кранов, задвижек и вентилей, поворотов и диафрагм.

Чтобы преодолевать местные сопротивления, поток затрачивает определенную часть энергии — в этом случае речь идет о потере напора на локальные сопротивления. Как правило, такие потери выражают в долях от скоростного напора, который соответствует средней скорости среды в трубах до местного сопротивления либо после него.

Найти данные о коэффициентах разных местных сопротивлений можно в соответствующих учебниках, пособиях, справочниках по гидравлике — данные могут быть представлены в разном виде, например как отдельные значения коэффициента гидравлических потерь, в виде диаграмм, таблиц, эмпирических формул.

При желании или необходимости потери напора на локальные гидравлические сопротивления можно рассчитать самостоятельно. Для этого используется формула:

где ξ представляет собой коэффициент местного сопротивления. Как правило, его определяют опытным путем,

g — ускорение свободного падения.

Местные гидравлические сопротивления: свойства и характеристики

Как мы уже упоминали, потери напора жидкости в случае с местными сопротивлениями определяются в большинстве случаев только опытным путем. Но и в теоретическом обосновании есть некоторые прорывы — так, местное сопротивление по своим свойствам и характеристикам аналогично сопротивлению, которое наблюдается при внезапном расширении струи. И это логично, если учитывать, что поведение потока жидкости при преодолении любого локального сопротивления сопровождается сужением или расширением сечения.

1. При внезапном сужении трубы сопротивление сопровождается появлением водоворотной области в месте сужения, при этом струя уменьшается до размеров меньших, чем сечение наименьшей трубы. После того как поток проходит участок сужения, струя максимально расширяется, ограничиваясь внутренним сечением трубы. Коэффициент местного сопротивления при резком сужении трубы рассчитывается по формуле: ξвн.суж. = 0,5(1 — (F2/F1)). Значение коэффициента от отношения F2/F1 несложно найти в соответствующих пособиях по гидравлике.

2. При изменении направления трубы под углом гидравлические потери рассчитываются по формуле: ξ поворот = 0,946sin(α/2) + 2,047sin(α/2)², где α — это угол поворота трубы. Поток ведет себя следующим образом: сначала струя сжимается, после чего расширяется, так как при повороте по инерции поток отжимается от стенок трубы.

3. При входе в трубу цилиндрической формы с острой кромкой, которая наклонена к горизонту под углом α, коэффициент местного сопротивления высчитывается по формуле Вейсбаха: ξвх = 0,505 + 0,303sin α + 0,223sin α². Иногда труба имеет закругленную форму или в сечении входа стоит диафрагма, которая сужает сечение, — в любом случае сначала струя потока будет сжиматься, потом расширяться, то есть местное сопротивление при входе в водопровод можно свести к внезапному расширению струи потока.

4. В промышленности, в частности при работе с насосным оборудованием, часто приходится рассчитывать местные сопротивления, которые создаются запорной арматурой — вентилями и клапанами, кранами и задвижками и так далее. Вне зависимости от того, какую геометрическую форму имеет проточная часть, ограниченная запорной арматурой, гидравлический характер течения при преодолении сопротивлений не меняется. Если мы говорим о полностью открытой запорной арматуре, гидравлическое сопротивление будет колебаться в диапазоне от 2,9 до 4,5. Коэффициенты для определенного вида запорной арматуры можно найти в соответствующих справочниках.

5. Гидравлические потери диафрагмы определяются сужением струи потока и последующим ее расширением. Степень сужения потока и его последующего расширения определяется несколькими факторами — это особенности конструкции диафрагмы, отношение диаметров отверстия трубы и диафрагмы, режим движения жидкости и так далее.

6. Наконец, часто бывает необходимо рассчитать коэффициент местного сопротивления при входе струи потока под уровень жидкости. Впрочем, сложных расчетов проводить не потребуется, коэффициент сопротивления при входе струи в большой резервуар под уровень жидкости или в среду без жидкости связан с потерей кинетической энергии и равен 1.

О гидравлическом сопротивлении, насосах и кавитации

Работа насосов и гидравлических машин направлена в том числе на преодоление гидравлических потерь. Чтобы снизить влияние таких потерь, при создании трассы стоит избегать узлов, которые будут резко менять направления потока. Оптимальный вариант — конструкции обтекаемой формы. Но нужно понимать, что даже максимально гладкие трубы не обеспечат отсутствие потерь: ламинарный режим течения не сопровождается большими потерями из-за шероховатых стенок, но турбулентный режим приводит и к росту гидравлического сопротивления трубы.

Иногда при движении жидкости по закрытым руслам меняется ее агрегатное состояние — она превращается в пар, то есть из жидкости выделяются газы, в ней растворенные. Если скорость небольшая, видимых изменений в ее движении не будет. Но при увеличении скорости движения на узком участке трубы появится отчетливая зона с пузырьками газа. Далее, когда жидкость подходит к широкой части трубы, пузырьки начинают резко уменьшаться в размерах, а затем исчезать — схлопываться. В месте схлопывания пузырьков резко увеличивается давление, которое затем передается на соседние объемы среды и далее на стенки трубы. Многочисленные местные повышения давлений приводят к вибрации.

Кавитация — нежелательное явление, которое может привести к очень быстрому износу определенных частей трубопроводного и насосного оборудования. Часто она возникает в местах локальных сопротивлений — в вентилях, кранах, задвижках и так далее. При этом кавитация снижает КПД, а в долгосрочной перспективе разрушает детали, стенки трубопроводов, уменьшая их пропускную способность.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: