Чем отличается пайка от сварки?

Сварка и пайка 2021

Сварка — это процесс соединения деталей, часто из металла, путем нагревания до степени плавления прикосновений. В отличие от сварки, которая является термической обработкой, а также пайкой, пайка представляет собой способ соединения преимущественно металлических деталей с использованием расплавленного материала с температурой плавления ниже температуры плавления основного материала.

Что такое Сварка?

Сварка представляет собой соединение двух или более одинаковых или разных материалов путем плавления или прессования с добавлением дополнительного материала или без него для получения однородного сварного соединения. В соответствии с методом соединения методов сварки они делятся на две большие группы:

  • Сварка плавлением, сварка материалов в расплавленном состоянии на месте соединения, с дополнительным материалом или без него.
  • Газовая сварка
  • Электрическая сварка
  • Сварка путем прессования материала в твердом или мягком состоянии в месте соединения с помощью давления или удара.
  • Кузнечная сварка
  • Электроустойчивая сварка.

Большинство сварочных процессов были обнаружены в XX веке, но некоторые методы, такие как сварка припоем, известны в старости. Сварка стала неотъемлемой частью навыков кузнецов, ювелиров и производителей пиломатериалов в производстве инструментов, оружия, сосудов, ювелирных изделий и зданий (заборы, двери, мосты, оборудование и т. Д.). Сварка — сложный процесс, и это не легко определить его точно. Термин «сварка» относится к способности материала достигать непрерывного сварного соединения при определенных условиях сварки, что будет отвечать условиям и долговечности свойств. Кроме того, химические свойства металла, размеры деталей, тип дополнительного материала, подготовка сварочного шва, зависят от свариваемости некоторых металлов.

Что такое пайка?

Пайка определяется как процесс соединения, когда основной материал соединяется вместе с использованием дополнительного материала, температура плавления которого не превышает 450 ° C. Основной материал не расплавляется во время процесса связывания. Дополнительный материал обычно расположен между правильно расположенными поверхностями соединения с помощью капилляра. Как и твердая пайка и другие процессы склеивания, мягкая пайка включает в себя несколько областей науки, включая механику, химию и металлургию. Пайка — это простая операция, состоящая из относительного расположения соединительных деталей, смачивания поверхностей расплавленным дополнительным материалом и обеспечения дополнительного охлаждения материала до его засорения. Связь между дополнительным и основным материалом больше, чем адгезия или механическая, хотя они вносят вклад в прочность соединения. Ключевой особенностью соединения является металлургическая связь между дополнительным материалом и основным материалом. Дополнительный материал реагирует с основным материалом и квазиобразованием путем образования интерметаллических соединений. После отверждения соединение удерживается вместе с той же силой притяжения, которая удерживает кусок металла вместе. Многочисленные способы нагрева, доступные для пайки, часто представляют собой конструкторские или инженерные ограничения при выборе лучшего капиллярного соединения. Поскольку эффективное капиллярное соединение требует эффективной передачи тепла от источника тепла, невозможно, например, проложить проволоку диаметром 0,0025 миллиметра в кусок меди весом от 2 до 3 кг с небольшой горелкой. Размер и цена отдельных сборок, необходимое количество и скорость производства будут влиять на выбор метода нагрева. Следует учитывать и другие факторы, включая скорость нагрева, дифференциальный температурный градиент, а также внешние и внутренние скорости охлаждения. Эти факторы сильно различаются в разных методах нагрева, и их влияние на стабильность размеров, деформацию и структуру соединения следует учитывать.

Разница между сваркой и пайкой

Температура плавления дополнительного материала

В случае сварки температура> 450 ° C, ниже или равна температуре плавления основного материала. Пайка представляет собой механический процесс с температурой

Чем отличается пайка от сварки: описание и отличия

Заданный вопрос лежит в сфере технологических процессов — и поэтому сначала потребуется взглянуть на упомянутые техпроцессы поподробнее.

Что есть сварка

Под сваркой понимается технологическая операция (процесс) по получению неразъёмного соединения элементов за счёт созданиями между ними межмолекулярных/межатомных связей при общем/местном нагреве либо пластической деформации (как вариант, допустимо одновременное воздействие факторов). Сварка применима и к металлам/сплавам, и к неметаллическим материалам: керамике, пластмассе и так далее.

Для подвода нужного количества энергии в точку сварки могут применяться разные способы: транзит мощного электротока через свариваемые элементы (сварка электрическая контактная), нагрев дугой (сварка электродуговая), за счёт химреакции горения (сварка газовая), концентрированным излучением/частицами (сварка сфокусированным электромагнитным излучением, лазером, электронным пучком), трением (сюда же относится и сварка ультразвуковая).

Сварка двух элементов может быть произведена посредством диффузионных/перемешивающих процессов того или иного рода при:

  • Нагреве материала в нужной точке до плавления без дополнительного сжатия элементов.
  • При умеренном сжатии и нагреве элементов одновременно.
  • При очень значительном сжатии элементов без подвода нагрева извне.

Что есть пайка

Под пайкой понимается технологическая операция (процесс) по получению неразъёмного соединения элементов посредством введения между соединяемыми поверхностями расплавленного припоя (в качестве такового выступает металл/сплав, температура плавления которого заведомо ниже, нежели чем у материала элементов), завершающаяся охлаждением. Сразу же интересно отметить, что практически под это же определение с минимальными изменениями подпадает распространённая ныне «склейка термопластичным клеем» — однако её именуют именно склейкой, оставляя за пайкой случай металлов/сплавов (см. ГОСТ 17325-79).

Важное значение в пайке имеет флюс — специальное вещество, дополнительно вводимое в контакт с припоем и спаиваемыми поверхностями. Как правило флюс реагирует с окислами металлов на поверхностях припоя/элементов, обнажая «чистые» (неокисленные) слои и дополнительно снижает поверхностное натяжение жидкого припоя.

В общем случае в зону пайки подводится тепло (специальным прибором — паяльником, либо общим нагревом — например, газовой горелкой) до расплавления припоя, но при этом она ниже температуры плавления поверхностей элементов, после чего припой за счёт поверхностных сил (смачивания) растекается по соединяемым поверхностям. После прекращения нагрева припой застывает, формируя соединение. Несколько особняком здесь стоит пайка-сварка: её отличает меньшее количество припоя и характер формируемого шва, из-за чего она более похожа на сварку (в случае разнородных материалов при пайке-сварке кромка более легкоплавкого элемента может оплавиться).

Итоги

Как хорошо видно из вышеприведённых описаний-определений, оба технологических процесса достаточно похожи и используются для соединения элементов изделия в одно целое, причём обрабатываемыми материалами могут выступать как металлы/сплавы, так и иные вещества, а сами процессы типично производится при повышении температуры.

Тем не менее, имеются следующие важные отличия:

  1. Существующее определение пайки подразумевает в основном использование металлов/сплавов, а спектр материалов для сварки много шире (например, пластмассы).
  2. При пайке подразумевается изначальное существование значительного зазора между элементами, который затем будет заполнен более легкоплавким припоем.
  3. Для пайки вообще более характерно использование дополнительного специального вещества — флюса, реагирующего с поверхностями и припоем (в сварке такими исключениями, использующими флюс, будут дуговая сварка с обмазанным электродом и сварка под дополнительным слоем флюса).
  4. При пайке так или иначе в зазор между требующими соединения поверхностями дополнительно вводится более легкоплавкий материал — припой (напрямую — или in situ, из флюса).
  5. При пайке соединяемые материалы не плавятся (исключение составляет пайка-сварка, когда оплавляется кромка одного из элементов, подвергаемых такой пайке).

Пайка и Сварка

Что такое Пайка?

Пайка как основной метод соединения металлов происходит по причине капиллярного действия расплавленных металлов. Процессы пайки можно подразделять на две категории: с помощью твердых и мягких припоев. Говоря о пайке твердыми припоями, подразумевают использование припоев, плавящихся выше 540 С, мягкими — ниже этой температуры.

При работе твердыми припоями при нагреве паяемых металлов расстояние между их молекулами увеличивается, между ними появляются микроскопические зазоры. Припой получает возможность протечь между соединяемыми металлами и в зазоры между молекулами. При охлаждении металлов и припоя две детали остаются соединенными вместе. Часто сплавы, используемые в качестве припоев, содержат в своем составе спаиваемый металл, чтобы соединение получилось практически незаметным.

Мягкие припои производятся на основе «белых металлов»: олова, свинца и висмута. Температура пайки недостаточна для «разрыхления» молекул. Сила их сцепления с поверхностью зависит от способности «приплавляться» к микроскопическим неровностям на металле. Так как сила сцепления мягких припоев обусловлена сцеплением с поверхностью, швы не заполняются ими заподлицо и остаются незаметными.

Читайте также  Утяжеленные бурильные трубы назначение конструкция

Успех пайки зависит от пяти основных этапов:

  • Подгонка: все спаиваемые поверхности должны быть тщательно подогнаны друг к другу. Припой не предназначен для заполнения брешей.
  • Чистота: успешное соединение деталей требует безупречно чистой поверхности, иначе припой не растечется должным образом.
  • Флюс: необходимо некоторое вещество, которое не даст кислороду прореагировать с поверхностью металла и загрязнить ее оксидами.
  • Нанесение припоя: на место стыка необходимо наносить подходящий припой и в должном количестве.
  • Нагрев: соединяемые металлы нагреваются лишь чуть выше температуры растекания применяемого припоя.

Осваивая лазерную сварку, ювелир должен понимать некоторые основные принципы процесса сварки, в частности, отличие от пайки. Основное отличие процесса сварки от процесса пайки в том, что при сварке материал, подлежащий свариванию, тоже плавится. При плавке основного материала для сваривания важно проникнуть в шов с правильной энергией луча и ее распределением, чтобы должным образом соединить две детали. Используемые в нашей промышленности лазеры имеют подобные настраиваемые возможности, управляющие различными аспектами совокупной энергии лазера и способом ее подачи.

Первое, что должен осуществить лазерный луч — это физическое проникновение в сварочный шов. Лазер должен соединить вместе два фрагмента металла. Для этого могут потребоваться разные характеристики энергии. Например, трехмиллиметровый платиновый ободок кольца требует для сварки энергию, отличную от той, которая нужна для застежки из желтого золота 18 кт. Прохождение пучка в сварочный шов называется проникновением. Проникновение достигается управлением физической силой лазерного пучка, обычно регулируемой в доступных на рынке лазерных установках через напряжение. Напряжение регулирует силу фотонов (материи) в световом пучке. Напряжение — это лишь одна из характеристик выходного лазерного пучка. Лазер должен обладать достаточной энергией для достижения пучком места сварки, а для этого нужно преодолеть сопротивление металла вокруг сварочного шва и проникнуть сквозь сопротивляющийся металл для доступа к внутренним поверхностям шва.

После проникновения к месту действия, лазерный пучок должен сохранять достаточную мощность для осуществления собственно сварочного действия (плавки окружающего металла). Другая управляемая характеристика мощности лазера — это продолжительность облучения металла в течение одного импульса (продолжительность импульса). Она регулируется на большинстве установок отрезками, измеряемыми и выражаемыми в милисекундах. Металл, по мере облучения лазером, нагревается до точки плавления и растекается по шву, заполняя его и соединяя фрагменты способом, не оставляющим шов. Продолжительность импульса можно использовать для проникновения через плавку, вместо силового проникновения, достигаемого через большое напряжение. Однако, более продолжительные импульсы могут выжечь некоторые металлы, оставляя ямки и делая их более хрупкими. Увеличение продолжительности импульса делает область плавки глубже и шире.

Лазерный пучок для проникновения требует иных аспектов мощности, чем для плавки. Напряжение и продолжительность импульса прямо пропорциональны величине мощности (измеряемой в джоулях) лазерного пучка, то есть увеличение напряжения, либо продолжительности импульса увеличивают входную мощность пучка, а уменьшение любого из этих параметров уменьшает общую мощность пучка.

Что делает лазер лазером?

Когерентный свет может быть сфокусирован намного точнее некогерентного (рассеянного), что позволяет обеспечивать очень высокую концентрацию световой энергии на очень малой площади. Эта энергия, отнесенная к единице площади, в 1000 раз выше, чем энергия на поверхности солнца.

Высокая температура, достигаемая при концентрации энергии, достаточна для локального разогрева металла до точки его плавления и выше.

Фактически на локальное плавление металла затрачивается очень малая часть энергии лазера. Лазер – идеальный инструмент для работы со всеми видами изделий из драгоценных металлов и сплавов, включая изделия с драгоценными вставками, чувствительными к температурным воздействиям.

Лазер, используемый в ювелирной промышленности, является твердотельным лазером и функционирует по классической схеме. Конденсаторная батарея используется для накопления энергии, которая расходуется на генерацию сильного светового импульса в лампе накачки. Этот свет попадает на Nd YAG-кристалл. Кристалл преобразовывает белый свет от лампы накачки в когерентный лазерный луч, который многократно умножается в резонаторе (кристалл, отражающее зеркало, отклоняющее зеркало). Процесс управляется бортовым микрокомпьютером. Высокая температура, возникающая в процессе генерации луча, поглощается деионизированной водой, охлаждаемой в дальнейшем в воздушно-водном теплообменнике.

Через систему линз лазерный луч попадает в рабочую камеру. Процесс сварки контролируется непосредственно через стереомикроскоп.

Чем лучше настроены все узлы лазера, тем выше качество и результат сварки и выше ресурс работы машины.

Энергия лазерного луча расплавляет металл в точке его контакта с металлом. Размер пятна и глубина проникновения луча в металл зависят от трёх основных параметров:

  1. Напряжение (мощность) – чем выше, тем глубже проникновение;
  2. Время (длинна) импульса – чем дольше, тем шире и глубже, тем больше расплавленного металла;
  3. Диаметр луча – чем больше, тем больше площадь сварки (пятна) но и ниже концентрация энергии на единице площади поверхности.

Для различных металлов эти параметры определяются в зависимости от их физико-химических свойств. Например, низкопробные золотые сплавы (белого и желтого цвета) просто и легко свариваются.

Высокопробные сплавы желтого золота (22К и выше), серебряные и медные сплавы свариваются намного хуже из за высокой отражательной способности и высокой теплопроводности.

Сварочный лазер должен иметь качественный (хорошо отьюстированный) луч. В этом случае результат сварки будет оптимальным, даже тогда, когда область сварки выходит за фокальную плоскость оптических приборов лазера.

Точная юстировка (настройка) оптики на всех участках прохождения луча улучшает его качественные параметры. Для достижения наилучшего результата при производстве лазера необходимо провести предварительные юстировочные работы.

Следует принять во внимание, что некоторые так называемые «производители лазеров» просто покупают отдельные компоненты различных поставщиков и механически их собирают. Весьма часто на их производственных участках изготавливаются только корпуса приборов.

Только отличная юстировка луча обеспечивает высококачественный результат и высокий ресурс работы.

Пайка и сварка – сравнение процессов.

Главная цель разработки лазеров для использования в ювелирной промышленности состояла в том, чтобы сэкономить время, уменьшить уровень брака и улучшить качество производимых изделий. Весьма часто, готовые ювелирные изделия отбраковываются из за дефектов, которые не могут быть устранены традиционными технологическими методами.

При пайке различия в цвете и твердости металла припоя ухудшают дизайн изделия и его механические свойства. Кроме того, после этой операции необходимо проводить отбеливание изделия с последующей полировкой.

При сварке нет необходимости в применении припоя. В этом случае используется присадочная проволока из металла, аналогичного металлу изделия, и нет разницы ни в цвете, ни в твердости. Нет так же необходимости отбеливания изделия с его последующей полировкой. Все эти аспекты делают лазер абсолютно необходимым инструментом для ремонта ювелирных изделий.

Элементы изделий, чувствительные к высоким температурам, такие, например, как ювелирные вставки (драгоценные и другие камни), а также пружинные элементы могут быть повреждены при ремонтных операциях, связанных с пайкой. Поэтому эти элементы предварительно должны быть удалены. Эти процедуры достаточно трудоёмки. Кроме того, камни, иногда достаточно дорогие, могут быть повреждены в результате раскрепки изделия. Пружинные элементы могут потерять свои механические свойства в результате отжига, при нагреве изделия под пайку. После пайки эти элементы необходимо установить на изделие – закрепить вновь вставки или завести пружины.

В случае лазерной подварки дефектов нет необходимости выкреплять камни и демонтировать пружинные элементы, так как высокотемпературное воздействие энергии лазерного луча сконцентрировано только в месте заварки дефекта и не нагревает всё изделие. Соответственно не нужно вновь крепить камни и заводить пружины.

В связи с этим лазер имеет существенное преимущество перед всеми остальными видами сборки, при этом значительно сокращается операционное время сборки, поскольку не требуется использование открытого пламени для пайки и целого ряда промежуточных технологических операций и приспособлений для их проведения.

Читайте также  Библиотека запорной арматуры для компас

Типовое применение лазера в ювелирной промышленности.

  • Подварка дефектов (пор, раковин) с применением присадочной проволоки идентичного сплава.
  • Подварка дефектов (пор, раковин) с применением присадочной проволоки идентичного сплава для изделий со вставками из драгоценных камней и элементов, чувствительных к нагреву.
  • Подварка дефектов (пор, раковин) с применением присадочной проволоки идентичного сплава для изделий с пружинными элементами. Без отжига последних.
  • Сборка или ремонт уже полированных частей.
  • Сборка или ремонт изделий с закрепленными вставками из драгоценных камней, чувствительных к нагреву.
  • Все виды монтировочных работ без применения фиксирующих приспособлений (биндеры, фиксирующие пинцеты и т.д.)
  • Ремонт антикварных изделий без снятия/порчи патины.
  • Ремонт дефектов закрепки – крапанов и других видов кастов без предварительной раскрепки камней, включая драгоценные.
  • Сборка трудоемких изделий с большим количеством мелких элементов без предварительной монтировки в гипсе.
  • Сборка браслетов.
  • Ремонт и сборка полых изделий с толщиной стенки менее 0,2 мм.
  • Сварка шинок колец при операции уменьшения размера.
  • Удаление гравировки методом подварки.
  • Соединение различных металлов (золото/платина, золото/титан и т.д.)
  • Сборка и ремонт элементов часов, в том числе из титана и нержавеющих сталей.
  • Ремонт матриц и пуансонов для штамповки.

Сравнение сварки и других способов соединения металла

Рассмотрим преимущества и недостатки склейки, пайки и заклёпывания

Однозначно, сварка является одним из наиболее распространённых способов создания соединения. Но для того, чтобы понять, как она снискала себе такую популярность, нужно сравнить её с другими способами-«конкурентами»:

Склейка

Склейка может применяться в конструкциях, для которых вообще не допускаются никакие тепловложения (наиболее часто такими являются трудносвариваемые металлы, такие, как титан или магний). К недостаткам можно отнести:

  • необходимость качественной подготовки поверхностей
  • подгонка соединения под нахлёсточный тип
  • малая прочность, по сравнению со сваркой
  • невозможность работы на разрыв (клееные соединения показывают лучшие результаты при работе на смещение)

Могут использоваться вместе с заклёпками (заклёпочно-клееные соединения) и сваркой (клее-сварные точечные соединения).

Пайка

Процесс пайки очень похож на сварку, часто сварочные аппараты подходят и для пайки. Отличие заключается в том, что при пайке плавится только присадочный материал, без расплавления основного металла. Как следствие — соединение не молекулярное, а капиллярное, а значит — менее прочное. Чтобы сильно не усложнять, рассмотрим выбор применения сварки и пайки на примере велосипедов.

Типичное использование Downhill велосипеда

Для крепких алюминиевых downhill, freeride, 4cross и прочих спортивных велосипедов применяют сварку, поскольку для них в первую очередь важна прочность сварных швов, ведь если на Downhill трассе шов треснет, то велосипедисту не поздоровится.

Рамы, в большинстве, делаются из алюминиевых сплавов, поэтому проблем с их сваркой, при наличии качественного и настроенного оборудования, не возникает.

Сварной шов (Алюминий 6061)

А вот относительно велосипедов, предназначенных для шоссе, треков и скоростных гонок, действуют совершенно другие законы. В погоне за легкостью, производители пытаются максимально уменьшить толщину трубок, с которых состоит рама. За счет этого крайне страдает теплоемкость. Проще говоря – при сварке они очень быстро треснут и потеряют геометрию. Раньше рамы делали с легированных сталей, которые и так тяжело свариваются, даже не смотря на маленькую толщину. Поэтому все рамы создавались посредством пайки, что позволяло значительно уменьшить тепловложение и увеличить упругость шва (что крайне полезно для велосипедов, у которых, фактически, нет подвески). Но за это приходится расплачиваться ухудшенной прочностью и худшими механическими характеристиками шва, по сравнению со сваркой. Сейчас же, всё больше рам изготавливают из карбона, поэтому в них не применяется вовсе никаких процессов образования соединения.

Паяное соединение шоссейной рамы

Заклепывание

Постепенно, шаг за шагом, сварка вытесняла заклепки, как способ образования неразъёмных соединений, но всё же, они ещё применяются, так в чем же секрет?

Не смотря на ограничения по типу наносимого шва (только внахлёст), проблем с долговечностью (очень часто заклёпки попросту расшатываются), необходимости предварительной подготовки (сверление отверстий) заклепывание находит свое распространение в мостостроении и авиастроении. Обусловлено это, в первую очередь, тем, что заклепочные соединение не имеют усталостной потери прочности и, как следствие — безопаснее для конструкции. К тому же, в авиастроении очень часто применяют металлы с крайне плохой свариваемостью, а для всего корпуса самолета обеспечивать контролированный подогрев и остывание затруднительно.

Стоит заметить, что во многих бытовых процессах, таких, как соединения тонких листов внахлест, кузовные автомобильные работы, точечная сварка (в особенности споттеры) показывает лучшие результаты в этих отраслях, чем заклепки, поэтому находит всё большее распространение.

Скрутка, пайка, сварка или клеммы — что выбрать? Распространённые способы соединения проводников

Как соединить две или несколько токопроводящие жилы между собой, каждый выбирает сам. Но не стоит забывать, что правильное соединение и надёжный контакт между соприкасающимися поверхностями — залог безопасной работы электросети и практически полное отсутствие рисков короткого замыкания, влекущего за собой нагрев проводника или возгорание изоляции.

Для того чтобы грамотно соединить провода, нужно помнить о нескольких важных пунктах:

  • сечение,
  • материал исполнения (медь, алюминий и т. д.),
  • рабочая среда (улица, помещение, производство и др.),
  • набор инструментов,
  • и главное — «Правила устройства электроустановок» — нормативный документ, включающий общие требования к проводникам и их соединениям. Необходим для работы электрикам и электромонтажникам.

Распространённые виды соединений

Клеммные колодки

Один из видов электроустановочных изделий для быстрого и относительно простого соединения проводов. Представлены в виде корпуса из диэлектрических материалов (либо безкорпусные) с несколькими металлическими контактами, к которым крепится провод. Могут оснащаться механическими, пружинными или болтовыми фиксаторами. Максимально допустимый температурный режим работы — до +300 °С и только для керамических клеммных колодок.

Подходят для использования в распределительных коробках, модулях, различных приборах освещения и блоках электропитания.

Преимуществом клеммных колодок является их простота использования. Недостаток — отсутствие возможности совмещать проводники из разных металлов.

Клеммные зажимы Wago

Подходят для экспресс-фиксации токопроводящей жилы. В основе изделия — рычажный зажимной механизм с предохранением фиксируемого кабеля от повреждения. Доступны в двух вариантах исполнения: разъёмные или многоразовые и неразъёмные.

Область применения: электророзетки общего и бытового назначения, а также системы освещения. В других областях применение не рекомендовано ввиду возможного оплавления клеммника и нарушения контакта между соединёнными проводами.

Одно из преимуществ соединения — простота. Способ не требует наличия специальных инструментов или аксессуаров, а также специфических знаний и навыков. Отличается большой площадью контакта и высокой силой зажима. Недостаток — плавятся при чрезмерном нагреве.

Соединительные изолирующие зажимы или СИЗ

Изделия представляют собой пластиковый колпачок с фиксирующей пружиной. Выполняются из негорючих материалов и отличаются низкой себестоимостью. Удобны для маркировки, так как поставляются в разном цветовом исполнении.

Область применения: монтажные коробки, осветительные приборы и оборудование.

Преимущества: низкая стоимость, простота применения, цветовое разнообразие, многократное использование. Недостатки метода: нельзя соединять между собой медь и алюминий, относительно слабая фиксация контактирующих поверхностей.

Гильзы для опрессовки

Соединительные обжимные гильзы — это полые алюминиевые либо медные трубки, в которые помещаются соединяемые провода. В отдельных случаях применяется как альтернатива сварке или пайке. Благодаря комбинированному варианту исполнения алюмомедные гильзы подходят для соединения разных типов кабеля (медного и алюминиевого).

Для создания надёжного контакта метод требует наличия специализированного инструмента — обжимных клещей. Обычные плоскогубцы для этой цели не подойдут, так как не имеют необходимых диаметров для опрессовки. Рекомендовано использование термоусадочных трубок для защиты гильзы от внешних воздействий.

Сфера применения: обжимные гильзы идеально подходят для организации безопасных контактов в розетках.

Преимущества: опрессовка — долговечный способ соединения, возможность коммутации медных и алюминиевых проводов между собой. Недостатки: относится к одноразовым/неразъёмным, требуют наличие специального инструмента.

Зажим «орех»

Удобный тип соединения проводников. Отличается простотой конструкции — 2 металлических пластины с местом под соединение и 4 зажимных винта по углам. Соединительные пластины защищаются карболитовой оболочкой, благодаря которой способ и получил своё название.

Читайте также  Утюг для сварки полипропиленовых труб насадки

Область применения: в основном в распределительных щитах многоквартирных домов.

Преимущества: высокая степень надёжности, не требует разрыва проводника, к которому необходимо присоединить дополнительный провод, допустимо соединять между собой медь и алюминий. Недостатки: из-за размеров не подходит для использования в распределительных коробках, где требуется разместить много контактов, низкая степень пыле- и влагозащиты.

Болтовое соединение

Способ прост и не отличается эстетическими изысками. Однако надёжен и долговечен. Используется болт, 3 шайбы и гайка. Для создания контактной поверхности необходимо надеть первую шайбу на резьбу болта, прикрутить одну из токопроводящих жил, затем надеть вторую шайбу, прикрутить второй проводник, после чего надеть 3 шайбу и прочно зафиксировать гайкой.

Область применения: хорошо подходит в качестве временного соединения «на скорую руку». Не рекомендован к длительной эксплуатации, особенно в местах, где отсутствует возможность постоянного контроля.

Преимущества: допустимо соединение проводов из разных материалов, быстрота. Недостатки: металлические шайбы могут сильно нагреваться, что создаёт риск возникновения пожара, полное отсутствие пыле- и влагозащиты.

Сварка

Метод требует наличия профессиональных навыков работы со сварочными аппаратами и ряд специализированных инструментов: пассатижи, бокорезы, флюс (для сварки алюминия) и защитные средства для глаз.

Область применения: чаще всего используется на производстве.

Преимущества: крайне высокая степень надёжности ввиду сплавления контактирующих поверхностей. Недостатки: не подходит для сварки между собой меди и алюминия.

Пайка

Область применения: радио- и микроэлектроника (для присоединения проводов на плату). Пайка также применяется для скрепления между собой различных проводников.

Преимущества: допустимо соединение между собой меди и алюминия. Существенный недостаток — слабое место коммутации. Разрыв в месте пайки может произойти даже при слабом воздействии. Также необходим набор обязательных аксессуаров: паяльник либо паяльная станция и припой.

Скрутка

Один из самых популярных и примитивных способов соединения. Используется повсеместно и с любыми видами кабельно-проводниковой продукции. Относительно недавно включен в разряд запрещённых (прямого запрета в ПУЭ на это нет, но и в список разрешённых соединений скрутка не входит). Изолирование контактирующих поверхностей при скрутке осуществляется с помощью изоленты или с применением термоусадочных трубок.

В зависимости от многих факторов, таких как профессиональный навык, усилие при скручивании, применение зажимного инструмента, а также видов проводников может быть как надёжным, так и нет. Подобное соединение связано с определённым риском, так как со временем скрутка теряет свои прижимные свойства, вследствие чего ослабляется контакт между проводниками, что приводит к повышению температуры в месте соединения и возгоранию.

Применение: скрутка больше подходит для организации временного соединения. Для исключения возможных рисков рекомендовано воспользоваться одним из выше представленных способов.

Преимущества: быстрота и простота применения, возможность соединения меди и алюминия. Недостатки: высокий риск возникновения пожара, быстрое окисление места соединения и, как следствие, ухудшение контакта.

Реферат – Пайка металло

Область применения пайки металлов, ее преимущества и недостатки. Методы паяния нихрома, титана, стали и других материалов. Выбор припоев и флюсов, от которых зависит качество паяного шва.

  1. Разновидности
  2. Технология пайки металлов
  3. Ваш комментарий к ответу:
  4. Ваш комментарий к ответу:
  5. Адгезия расплавов и пайка материалов. Сборник научных трудов. Вып. 41
  6. Бессвинцовые технологии
  7. Сравнение со сваркой
  8. 2.3 Контактно-реактивная пайка
  9. Обзор видов
  10. Низкотемпературная
  11. Высокотемпературная
  12. 2 .4 Реактивно-флюсовая пайка
  13. Стандарты
  14. Меры безопасности
  15. Пошаговая техника пайки проводов
  16. Что понадобится?
  17. См. также
  18. См. также
  19. См. также
  20. Пошаговая методика пайки радиодеталей на плату
  21. Возможные проблемы при пайке
  22. Работа с медью
  23. Написать отзыв
  24. Литература
  25. Видео по теме

Разновидности

Пайка бывает низкотемпературная (до 450 °C) и высокотемпературная. Соответственно припои бывают легкоплавкие и тугоплавкие. Для низкотемпературной пайки используют в основном электрический нагрев, для высокотемпературной — в основном нагрев горелкой. В качестве припоя используют сплавы оловянно-свинцовые (Sn 90 % Pb 10 % c t° пл. 220 °C), оловянно-серебряные (Ag 72 % с t° пл. 779 °C), медно-цинковые (Cu 48 % Zn остальное с t° пл. 865 °C), галлиевые (t° пл.

50°С), висмутовые (сплав Вуда с t° пл. 70 °C, сплав Розе с t° пл. 96 °C) и т. д.

Пайка является высокопроизводительным процессом, обеспечивает надёжное электрическое соединение, позволяет соединять разнородные материалы (в различной комбинации металлы и неметаллы), отсутствие значительных температурных короблений (по сравнению со сваркой). Паяные соединения допускают многократное разъединение и соединение соединяемых деталей (в отличие от сварки). К недостаткам можно отнести относительно невысокую механическую прочность.

Исходя из физико-химической природы процесса, пайку можно определить следующим образом. Процесс соединения металлов в твёрдом состоянии путём введения в зазор припоя, взаимодействующего с основным металлом и образующего жидкую металлическую прослойку, кристаллизация которой приводит к образованию паяного шва. Пайка подразделяется на капиллярную, диффузионную, контактно-реакционную, реакционно-флюсовую и пайку-сварку. В свою очередь, капиллярная подразделяется на горизонтальную и вертикальную. Диффузионная — на атомно-диффузионную и реакционно-диффузионную. Контактно-реакционная — с образованием эвтектики и с образованием твёрдого раствора. Реакционно-флюсовая — без припоя и с припоем. Пайка-сварка — без оплавления и с оплавлением. Анализируя сущность физико-химических процессов, протекающих на границе основной металл — расплав припоя (при формировании соединения в существующих видах пайки), можно видеть, что различия между капиллярной пайкой, диффузионной пайкой и пайкой-сваркой не носят принципиального характера. Капиллярность является общим признаком пайки. Отличительным признаком диффузионной пайки является длительная выдержка при температуре пайки и изотермическая кристаллизация металла шва в процессе пайки. Других характерных признаков этот метод не имеет, основное назначение его — повысить температуру распая шва и прочность паяного соединения. Диффузионная пайка может быть развитием любого вида пайки, в том числе капиллярной, реакционно-флюсовой или контактно-реакционной. В последнем случае диффузионная пайка возможна, если второй металл взаимодействующей пары вводится в виде прослойки между соединяемыми металлами. При реакционно-флюсовой пайке происходит совмещение процессов вытеснение из флюса металла, служащего припоем, и его взаимодействия с основным металлом. Наконец, пайка-сварка отличается от других методов пайки количеством вводимого припоя и характером формирования шва, делающим этот метод пайки похожим на сварку плавлением. При соединении разнородных металлов при пайке-сварке возможно оплавление кромки одной из деталей, изготовленной из более легкоплавкого металла.

Технология пайки металлов

Технология пайки металлов протекает в следующем порядке:

  1. Вначале тщательно зачищаются соединяемые поверхности деталей. Снимается фаска;
  2. Наносится тонким слоем флюс. Какой наносить флюс зависит от свойств металла, который будут паять. Для лучшего распределения флюса по поверхности, необходимо прокрутить соединяемые детали. Или же поверхность подвергают лужению;
  3. Затем горелкой разогревается заготовка в определенном радиусе от места соединения. Для более качественной пайки место соединения прогревается до температуры, которая значительно выше температуры плавления припоя;
  4. На разогретое место соединения присоединяют припой, который быстро плавится и заполняет зазор соединяемых деталей. Некоторые виды пайки включают в себя лужение зачищенной поверхности и последующее соединение и прогрев;
  5. После пайки остывание должно происходить естественным путем. Иначе качество соединения может пострадать.

Технология пайки металлов без припоя применяется при соединении титана и меди. Используется явление контактного плавления. Учитывая, что плавление меди происходит при температуре 1083 градусов Цельсия, а титана 1725 градусов Цельсия, то при плотном соединении и нагреве до 900 градусов Цельсия, имеющийся зазор заполняется расплавом в месте контакта. Происходит процесс диффузии металлов.

Пайка находит свое применение в соединении труб теплообменников, в холодильных установках, системах, передающие разные жидкости и газы и др.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: