Светильник трубчатый светодиодный своими руками

Как своими руками сделать светодиодный светильник

Led-освещение распространено и в частных. и в общественных помещения.

Однако покупка и установка оборудования для него обходится достаточно дорого.

Поэтому рассмотрим, как сделать светильник из светодиодов и подручных материалов своими руками, какие устройства, расходники, инструменты для этого потребуются, и какие варианты приборов могут при этом получиться.

Как подобрать светодиодные лампы для светильника

При создании светодиодных светильников применяют два вида led-лампочек по мощности:

  1. До полуватта. Их главные особенности – минимальный нагрев и возможность задать осветительному прибору любую форму, благодаря большому количеству точек. Недостаток – их монтаж весьма трудоемок, если учесть, что паять и соединять нужно своими руками.
  2. От 1 до 5 Вт. Большая мощность диодов позволяет существенно снизить их количество в устройстве, что уменьшает трудозатраты. Однако эффективная эксплуатация осветительного прибора на их основе невозможна без правильного подбора радиатора и рассеивателя света.

Изготовление led-светильников возможно также на основе светодиодных лент. Мощность освещения, цветовая подборка и плотность расположения лампочек в полосе определяется условиями эксплуатации и личными предпочтениями того, кто будет собирать их своими руками. В ширину стандартно они достигают 8-10 мм, а в длину – до 5 метров (именно такую протяженность имеют в продаваемых катушках). Питание осуществляется от источника постоянного тока с напряжением около 12 вольт и выше. Для подключения их от бытовой сети потребуется соответствующий блок питания. Также их можно собрать и на батарейках.

Расчет и принцип работы драйвера с гасящим конденсатором

Чтобы оснастить уже имеющиеся люстры и прочие светильники в квартире дешевым источником светодиодного света можно применить схему драйвера с гасящим конденсатором.

Главная его особенность – низкое потребление энергии. Собирая блок своими руками, каждый убедится, что он достаточно прост и в нем нет ничего лишнего, в том числе стабилизатора. Применяемые диоды не выделяют много тепла, поэтому в устройстве также отсутствует радиатор.

Единственный минус такой схемы – прямое подключение к сети 220В. Это значит, что если будут постоянные перебои напряжения, светильник станет постоянно мигать. Чтобы собрать подобный драйвер, потребуется подготовить исходные материалы:

  1. Макетная плата.
  2. Одно-двухваттные резисторы.
  3. Предохранители.
  4. Конденсаторы 47 mF на 500 В.
  5. Диодные мосты типа КЦ405А.
  6. Конденсаторы пленочные на 600 вольт (можно взять больше).

Если светодиодный светильник изготавливается для потолочной люстры под стандартный патрон, в качестве базы можно взять цоколь от перегоревшей экономной люминесцентной лампы. Для этого нужно своими руками, лучше вне помещения, аккуратно отсоединить лампу.

Схема

Работы схемы конденсатора, изготовленного своими руками, подчиняется следующему алгоритму:

  1. Резистор (обозначаемый на схеме R1) снижает скачки в сети до момента стабилизации схемы. На это уходит порядка одной секунды. Его параметры – сопротивление 50-150 Ом, мощность – 2 Вт.
  2. Резистор (на иллюстрации R2) поддерживает работу конденсатора-балласта – разряжает его, когда питание отключается. На практике это полезно для того, чтобы в случае необходимости проведения ремонта своими руками, мастер не подвергался действию электричества. Помимо этого, он препятствует образованию токового броска при не совмещении первой полуволны переменного сетевого тока с полярностью конденсатора.
  3. С1 непосредственно гасящий конденсатор. Это главный элемент схемы светодиодного светильника на основе ленты или ламп. Его функция – фильтрация тока. С его помощью (варьируя параметр мощности) можно задать любое значение силы тока в цепи. Так, для диодов, приведенных в качестве основы (см. выше) его значение не долго превышать 20 мА при пиковом напряжении.
  4. Дальше по схеме включается диодный мост.
  5. С2 (конденсатор электролитического типа) предотвращает ламповое мерцание. Кроме того, благодаря медленному разряжению электролита светильник затухает не немедленно, а постепенно.

Важно! Led-элементы светодиодной ленты не обладают эффектом инертности. Поэтому при включении и выключении глаз человека может замечать изменение стабильности освещения только при частоте в 50 Гц. Однако если посмотреть на светильник через камеру смартфона, можно сразу обнаружить его качество. Как правило, дешевые китайские диоды сразу выдают себя мерцанием, незаметным невооруженным глазом.

Основы расчета

Чтобы правильно рассчитать конденсатор, необходимо воспользоваться следующей формулой: I = 200*C*(1.41*U cети – U led): I – ток цепи (А); цифра «200» – постоянная, полученная умножением частоты тока 50 Гц на «4»; значение «1.41» – еще одна постоянная; С – емкость гасящего конденсатора, выраженная в фарадах; U cети – напряжение в используемой сети, обычно 220В; U led – общее падение напряжение на светодиодной полосе или отдельных диодов, например если каждый элемент имеет по 3,3В, то это значение нужно умножить на общее их количество и получится величина U led.

Правило подбора тока цепи (I) достаточно просто. Необходимо подобрать емкость гасящего конденсатора и количество диодов с заданным напряжением так, чтобы искомое значение тока цепи не превышало указанно в параметрах led-элементов. Задавая величину I можно устанавливать яркость свечения. Период времени службы диодов находится от нее в обратной зависимости.

На изображении приведена иллюстрация схемы типичного драйвера с гасящим конденсатором.

Интересно! Как вариант в качестве источника питания может использоваться аккумулятор. Светильник на батарейках можно подключать без драйвера. При этом при расчете его мощности нужно учитывать суммарное падение напряжение всех светодиодных элементов.

Какие материалы можно использовать

В ходе изготовления самодельных светильников пригодны любые материалы, сочетающиеся со светодиодными лентами и лампочками. Корпус можно изготовить как своими руками, так и взять за основу ранее использовавшийся прибор. При этом обязательно нужно учесть теплоотдачу led-элементов. Без правильно подобранного радиатора они быстро испортятся.

Для диодов большой мощности потребуется теплопроводящий материал. Например, это может быть алюминиевый профиль, труба, конус и прочие металлические предметы. Для таких элементов, как светодиоды 5 мм «соломенная шляпа» с углом распределения светового потока в сто двадцать градусов можно использовать любой материал – пластик, бумагу, дерево, картон – так как они не нагреваются.

Как сделать светильник своими руками: подробные инструкции

Теперь рассмотрим самые популярные варианты изготовления светильников на основе светодиодных элементов. Разберем подробно, как своими руками сделать их корпус, и какие материалы лучше использовать для настольных и настенных ламп, а также декоративных приборов освещения и некоторых других моделей.

Настольный

Для изготовления своими руками настольного светильника в первую очередь потребуется модернизировать уже имеющий прибор освещения. Для этого нужно:

  1. Извлечь родной патрон.
  2. В качестве базы взять цоколь от вышеописанной экономной лампочки и поместить в него, соединяя по схеме, драйвер с гасящим конденсатором.
  3. В качестве корпуса для светодиодных элементов можно использовать, к примеру, колпачок от дезодоранта подходящего размера.
  4. По всей его площади просверливаются/пробиваются отверстия подходящего диаметра под 5-миллиметровые диоды (всего около 50-60).
  5. К остатку цоколя от экономной лампочки корпус прикрепляется на небольшие саморезы к круглому пластиковому основанию диаметром как у колпачка. При этом сама основа крепится на небольшие уголки-подиумы также на крепежные элементы.
  6. После фиксации и сбора светильник просто вкручивается вместо обычной лампы накаливания в плафон для настольника.

Совет! Используя вышеприведенную технологию, можно своими руками изготовить светильники для обычных подвесных люстр, а также плафонов, вывешиваемых для освещения подсобных помещений, гаражах, бань, подвалов. Вместо обычных ламп накаливания или «экономок» в них будут применены светодиодные самоделки.

Настенный

Настенный светодиодный светильник может применяться в различных помещениях – ванной и санузле, на кухне и в детской, гостиной и прихожей, коридоре. Процедура изготовления его в форме круглого плафона своими руками выглядит следующим образом:

  1. Прежде всего необходимо подобрать основание под монтаж диодов. Оно должно быть соразмерно рассеивателю. Например, можно вырезать дно от пластикового строительного ведра.
  2. Рассчитав необходимое количество диодов (в среднем 100-120), необходимо строго по разметке равномерно проделать отверстия.
  3. На обратной стороне основания закрепляется драйвер, при необходимости несколько штук.
  4. Основание с диодами и драйверами обязательно фиксируется к базе плафона на саморезы. Для этого по середине необходимо установить пластиковый или металлический подиум.
  5. Собранный прибор закрепляется на стену и закрывается рассеивателем.

Такой светильник с некоторой модернизацией можно приспособить не только для настенного, но и потолочного монтажа.

Декоративный

Светодиодные ленты представлены на рынке в достаточно широком разнообразии – по мощности, световой температуре, цветовым оттенкам и прочих параметрам. Самоделка на их основе не представляет ничего сложно, по крайней мере, сделать из них плафон для украшения намного проще, чем светильник с драйвером по вышеописанной схеме.

При этом оформление его корпуса и рассеивателя будет ограничиваться лишь рамками фантазии самого изготовителя. К светодиодной ленте потребуется блок питания, а также модуль управления, если планируется варьировать характеристики ее работы по цвету, световому потоку, интенсивности, времени.

Основные правила сборки самодельных led-светильников

Чтобы сделать рабочий светильник на основе светодиодов, необходимо убедиться как в грамотности его схемы, так и в правильности подбора его элементов:

  1. Сборку диодов осуществлять строго по приведенной схеме. При неправильном подключении возможен взрыв!
  2. Качество спайки компонентов должны быть на высоком уровне. В противном случае возможно разъединение контактов и поломка светильника.
  3. Для точного расчета всех параметров, в том числе падения напряжения, необходимо проводить предварительные замеры точными приборами, мультиметром.
  4. Чтобы устранить эффект голубоватой подсветки (раздражающих глаза) белых диодов, необходимо на каждые 10 led-элементов монтировать 3-4 красных.

Интересно! Приведенная выше схема изготовления светильника своими руками достаточно проста, эффективна и экономна. Однако она подключена напрямую к сети с напряжением в 220В, что не исключает поражения электрическим током, и потому требует соблюдения правил безопасности как с любым другим бытовым электроприбором.

Основные выводы

Изготовить светильник своими руками можно с применением подручных средств и недорогих радиотоваров. Также для этого потребуется непосредственно светодиодные элементы – лампы или ленты. Они могут быть как маломощными, так и сильными. При выборе материала для корпуса нужно исходить из параметров их теплоотдачи. Чтобы подключить такой прибор в сеть без блока питания, потребуется изготовить драйвер с гасящим конденсатором, предварительно рассчитав его по формуле.

С помощью предложенной технологии можно изготовить светильники любой формы и параметров для установки их в качестве основного или декоративного источника освещения. Монтировать своими руками их можно на потолок и стены в плафоны, в люстры и настольные лампы, а также в любую другую специально изготовленную художественную конструкцию.

Как сделать светодиодную люстру «кольца Сатурна»

Здравствуйте, уважаемые читатели и самоделкины!

Читайте также  Все для фитинга в аквариуме

С относительно недавним появлением светодиодных лент, становится все проще изготавливать самые разнообразные светильники самостоятельно. Немаловажным фактором является достаточно высокая безопасность таких источников света, ведь применяется низкое напряжение питания.

В данной статье автор YouTube канала «Gui Toledo» расскажет Вам, как можно сделать элегантную люстру «кольца Сатурна» в стиле модерн.

Процесс изготовления.
Итак, абажуром и одновременно каркасом такого светильника послужит стальной П-образный профиль. Его ширина должна быть немного больше ширины используемой светодиодной ленты.

Первым делом нужно прикинуть диаметр будущих колец, и, воспользовавшись детсадовской формулой πD, вычислить итоговую длину окружности.

Учитывая особенность работы гибочного станка, нужно добавить к полученной длине запас около 20 см, и нарезать заготовки болгаркой.














Для нанесения грунтовки по металлу методом распыления, мастер делает ее более жидкой, разбавляя ее скипидаром. Им же можно обезжирить поверхности заготовок.














Провод питания выводится через отверстие в кольце, и лента проклеивается по периметру внутри профиля.
Излишек ленты срезается по специальной метке.

Для того, чтобы лента равномерно светилась по всей длине, питание желательно подать с «двух сторон», либо в нескольких точках.



Кстати, автор использовал самую простую светодиодную ленту, а от множества мелких точечных источников света возникают нежелательные эффекты освещения. Именно поэтому нужен рассеиватель.

Совсем недавно появилось новое поколение светодиодных лент COB (Chip On Board). При ее изготовлении, как видно из названия, кристаллы устанавливаются прямо на поверхность ленты, и непосредственно заливаются люминофором.

Конкретно в этой модели ленты высокой плотности, на одном метре расположено аж 480 светодиодов (в сравнении с 30 или 60 на обычной). В итоге для нее не потребуется рассеиватель, а мощность составляет 9 Вт на метр.

Ширина ленты всего 8 мм, а это позволит приклеить в такой профиль сразу две ленты параллельно, увеличив мощность в два раза. Сам металлический профиль послужит неплохим радиатором, а это продлит срок службы ленты.



















Одним из главных преимуществ таких светильников — полное отсутствие мерцания, как это бывает с дешевыми светодиодными лампами.
Применение светодиодной COB ленты нового поколения обеспечит большую яркость и равномерность освещения без использования рассеивателей.

Благодарю автора за мастер-класс по изготовлению подвесного светодиодного светильника «кольца Сатурна».

Всем новогоднего настроения, крепкого здоровья, и интересных идей!
Подписывайтесь на телеграм-канал сайта, чтобы не пропустить новые статьи.

Авторское видео можно найти здесь.

Светодиодный светильник на 10 Вт своими руками

Давно хотел замутить что нибудь светодиодное, даже заказал из Китая вот такой комплект одноватных светодиодов и драйвер к ним. А на днях отдали за ненадобностью полностью выгоревший люминесцентный светильник (фото ниже). Вот на корпусе этой лампы я и решил потренироваться, превратив его в светодиодный светильник. Можно конечно и этот светильник вернуть к жизни, купив и заменив выгоревшее ЭПРА на аналогичное. Или же вообще ничего не покупать, а установить компактные платы ЭПРА из энергосберегающих ламп, благо таких набралось уже с десяток, ибо дохнут эти энергосберегайки как мухи. Но так как мощнее этих светодиодных пупырышков я ещё ничего не подключал, решил всё же полностью переделать этот люминесцентный светильник, чтобы посмотреть как они вообще светят и стоит ли из них что нибудь городить.

Изначально в этом светильнике было установлено две лампы мощностью 18 Вт. Но так как один держатель лампы выгорел и практически полностью расплавился (фото ниже), в общем какое то время использовалась только одна лампа. На днях и последняя лампа внезапно потухла, после чего, этот светильник перекочевал ко мне на ремонт или утилизацию.

На первый взгляд эпра казалась исправной, разве что на предохранителе оплавилась плёнка. Но как только вытащил её из короба, то сразу стало понятно что работать сие плата без мультиметра больше не будет, ибо на дне короба хорошо сияли следы мини пожара :-) На самой же плате, частично выгорели дорожки и обгорели ножки конденсатора в центре. В общем не зря говорят — предохранитель всегда сгорает последним.

По заявлениям Китайцев, этот драйвер на 8-12 Вт и с током в

300 мА, поэтому решил подцепить к нему параллельно две нитки по 10 светодиодов. Теоретически, общая мощность всех светодиодов будет 10 Вт, но ток (300 mA) на двух нитках располовинится и составит

150 мА на каждую ветку. Минус такого огорода — светодиоды светят вдвое слабже. Плюс — меньший нагрев и долгий срок службы диодов (я так думаю). Особо не вникайте в мой пьяный бред, ибо в электрике я ничего не понимаю и частенько собираю всё на авось :-)

К сожалению, из всех гостинцев полученных на днях, из Китая всё никак не доедет теплопроводный клей, с помощью которого, этот светильник можно было бы собрать намного легче. А так как светильник собрать хочется здесь и сейчас, то вместо термоклея решил использовать пружинки нарезанные ножницами из жести. Тем более эта железяка будет служить дополнительным радиатором и немного отбирать тепло у фонариков. В общем немного математики с черчением, после чего сверлим отверстия и нарезаем пластины.

Как то вот так будет притягивать светодиоды к алюминиевому профилю светильника, эта жестянка.

С помощью наждачных бумаг, избавляемся от краски, чтобы она не мешала отводить тепло от светодиодов.

Для соединения светодиодов в цепочки, решил использовать обычную лакированную проволоку, так как её не надо зачищать, ибо под паяльником лак осыпается на ура, а провод соответственно лудится. Хотя в последствии прибавило головной боли, так как эта проволока жёсткая и постоянно мешала регулировать положение светодиодов на профиле. Кстати, ножки у светодиодов пришлось выпрямить, так как изначально они изогнуты ближе к основанию светодиода.

Пробная сборка светильника. Кстати, если будете что-то собирать и таких светодиодов на 1 Вт, то обязательно прозвоните тестером или мультиметром выводы светодиодов на замыкание относительно их металлической подошвы. Так как после полной сборки обеих цепочек диодов и установки их на профиль лампы, у меня мультиметр показывал замыкание одного вывода диода на корпус лампы. Как оказалось, контакт был от подошвы одного светодиода, при этом сам светодиод рабочий и прекрасно светился.

Теплопроводного клея пока нет, но вот термопасты КПТ-8, которая осталась от сборки и апгрейдов домашних компьютеров, хоть ж. й жуй :-)

Выколупываем всякие переборки которые ранее держали патроны люминесцентных ламп, освобождая тем самым место для драйвера светодиодов.

Пока эти одноватные светодиоды были без радиатора, сложно было протестировать будущий светильник, так как без должного охлаждения они практически моментально раскалялись. Сейчас же можно (даже нужно) поиздеваться над светильником по полной, чтобы выявить все его слабые стороны. В общем работает светильник замечательно, за час непрерывной работы, профиль под светодиодами стал чуть тёплым. А вот драйвер греется ощутимо, особенно этот квадратный трансформатор или дроссель, сам толком не знаю как обозвать эту приблуду. Пробовал оставлять только одну цепочку светодиодов (10 штук), особой погоды это не сделало, он по прежнему сильно греется. Пока решил оставить всё как есть, а заодно заказал с Али ещё горсть разнообразных драйверов. Подождём, посмотрим, может другая схема драйвера не так сильно будет отапливать помещение :-)

Корпус светильника слегка убитый временем, поэтому решил слегка осветлить его. Демонтируем диоды, под жестянки клеим скотч, и прикручиваем их на свои места.

Белого глянца под боком не оказалось, пришлось использовать грунт. Перед окраской, конопатим газетой всякие отверстия.

В итоге получаем не окрашенные участки профиля для установки светодиодов.

Так как под пластинами довольно тесно и не видно что там творится, а заново перепаивать эту кучку диодов, чтобы надеть на выводы термоусадку, что-то не очень то и хотелось. Решил тупо за изолировать их термоскотчем (фото ниже), который так же заказывал на Али.

Окончательно собираем светильник.

Отмываем рифлёное стекло от копоти.

На время испытаний, пристроил этот замечательный светильник над кухонной мойкой, рядом со стареньким люминесцентным (фото ниже), который пока решил не снимать. Если этот новодел отработает хотя бы полгода или же год, тогда можно будет избавиться от люминесцентного старичка. Изначально кнопку не устанавливал, ибо неизвестно было, куда впоследствии буду устанавливать этот светильник. А после того, как нашёл ему место на кухне и окончательно определился с местом под выключатель, просверлил и расточил прямоугольное отверстие в профиле светильника под выключатель с подсветкой.

В старом светильнике стоит одна люминесцентная лампа на 18Вт. По анимации ниже, примерно видно насколько ярче светит светодиодный светильник в сравнении со старым. Сравнение конечно не эталонное, ибо на старом светильнике выгорело стекло (стало жёлтым), да и направление света немного другое, но тем не менее.

В целом светильник светит довольно ярко, и на первый взгляд даже ярче обычной лампы на 60 Вт, при этом мощность самого светильника около 10Вт. Всяких люксметров у меня нет, поэтому чуть позже добавлю фоток для сравнения яркости этого самодельного светодиодного светильника с обычными лампочками Ильича. А так как в светильнике стоят светодиоды тёплого свечения, то думаю что на глазок легче будет сравнить две жёлтые лампочки, нежели холодную с тёплой.

Ниже перечислил основные составляющие для сборки этого светильника, которые были куплены на Али.

Послесловие 1

Вместо фоток, для сравнения снял видео на мобилу (чуть ниже в теме). На видео, в начале светит лампа накаливания на 60Вт, а затем этот светильник. Слегка угадывается не совсем тёплое свечение у светодиодов, но тут не стоит особо удивляться ибо у светодиодов тоже есть некоторый разброс цветовых температур на очень холодные, немножко холодные, тёплые, возможно тёплые, горячие, очень горячие :-) А учитывая что диоды брал на Али, то радует уже то, что они хотя бы не сиреневые. Так же слегка размыта тень на предметах, но это уже из-за полуметрового разброса светодиодов по поверхности профиля светильника. В общем от этих светодиодов я ожидал худшего, но оказалось что светят они довольно ярко, и это при таком корявом подключении (

150мА на цепочку). Надо будет попробовать пересобрать какой нибудь энергосберегающий светильник в квартире. Хотя сомневаюсь что горсть диодов на 10-15Вт, переплюнет по яркости энергосберегайку в 25Вт. С другой стороны, если же ставить в приоритет долговечность а не экономию электроэнергии, тогда да, имеет смысл переходить на светодиодные светильники.

Читайте также  Технология выполнения работы монтаж трубопровода

Послесловие 2

В общем добрался я и до обычных настенных и потолочных светильников в квартире, ибо из Китая на днях всё же приехали светодиоды, драйвера и теплопроводный клей. А чтобы все эти драйвера не валялись без дела, то решил установить их в светильники и тем самым поставить на счётчик, так как самому интересно, на сколько они надёжны и как долго прослужат. Так что если кому интересно взглянуть на всё это безобразие и что в итоге из него получилось, то вот здесь переделка светильников для ванной, а вот тут для кухни.

Написать сообщение автору
Автор: Nikolay Golovin — — — — — — — —
06.04.2016

Как сделать светодиодный светильник своими руками

Задумывались о том, как проверяют купюры? Присутствует множество степеней защиты. Это и перфорация, и водяные знаки, но все оказалось бы попусту, если бы не специальная краска, видимая исключительно при облучении определённой длиной волны. На подобном принципе работают кассовые аппараты. Считается, если облучить купюры инфракрасным либо ультрафиолетовым светом, проявится картинка. Все страны мира используют подобные технологии. А теперь поговорим, как сделать светодиодный светильник самостоятельно, и какая связь с банкнотами.

Как работает светодиод

Отличие светодиодов в узком диапазоне излучения. Попробуйте проделать простой опыт. Возьмите настольную лампу и зажгите, удерживая рукой плафон. Излучение быстро нагреет сталь. Почувствуем рукой излучение, если поставить её перед лампочкой накала. Проблематично удержать стекло уже через несколько десятков секунд работы.

Львиная доля тепла переносится в инфракрасном диапазоне. Для Солнца это справедливо, но лампочка, чья температура меньше, проявляет это свойство явно. Неоспоримо, дневной свет ярче. Но не все понимают, что такое инфракрасный диапазон. Это длины волн, лежащие ниже видимого участка спектра, а именно – красного. Эти частоты высоки.

Участок инфракрасного диапазона шире у лампочек. Примерный расчёт: согласно Википедии ширина этой области составляет порядка 429 ТГц. Видимый свет занимает порядка 400 ТГц. Для Солнца с его высокой температурой согласно закону Вина плотность излучения уходит далеко в ультрафиолетовый спектр (высокие частоты, простирающиеся почти до рентгеновских). Для лампочки играют роль две поправки:

  1. Температура спирали сравнительно низкая. Часто это тёплые тона 2700 – 2800 К. У Солнца температура поверхности доходит до 6000 К.
  2. График, представленный на рисунке, даёт понять, что добрая часть спектра (ограничен кривой в виде колокола) приходится на инфракрасное излучение.

График спектра накала лампы

Приходим к выводу, что лампочка – блеклое подобие Солнца. Энергия уходит впустую. КПД лампочки накала по определению невысокий. В отличие от этого полоса излучения светодиода сравнительно узкая. На их основе изготавливают лазеры одной частоты. В последнем случае мощность излучения сосредотачивается на узкой полоске спектра. В результате, глаз ощущает большую яркость, но в действительности мощность излучения меньше.

За счёт этого, светодиодные лампочки по освещённости аналогичные накальным остаются холодными, спустя часы работы. Вот причина экономии. Если сделать самостоятельно светильник из светодиодной ленты, заплатим за свет меньше. Большинство светодиодов показывают сравнительно низкое рабочее напряжение. Посмотрите на фото: примотали скотчем ножки ультрафиолетового светодиода к батарейке на 3 В.

Крепление светодиода к батарейке

Как сделать из светодиодов источник света

Важно провести подключение правильно. Светодиод легко пробивается обратным напряжением, возможно, не дотягивающим до прямого рабочего. Не ошибётесь, если станете длинную ножку прикладывать к положительной полярности батарейки (плоская сторона, помеченная крестом, проведена маркировка). Большинство светодиодов не допускает работы при напряжении выше 3 В. Чтобы сделать светильник из светодиодной матрицы на интерфейс USB, применяют ограничительные резисторы. Часть мощности теряется на активном сопротивлении. Подбор ведётся, исходя из двух противоречий:

  • Если номинал сопротивления слишком мал, сгорит светодиод. В силу законов физики напряжение делится пропорционально. Проще использовать переменный резистор и батарейку на 5 В, чтобы выбрать нужный номинал для шины USB. Для любителей расчётов приведем и пропорцию, по формуле идёт деление напряжения: U1/U2 = R1/R Где R1 – сопротивление резистора, а R2 – сопротивление диода постоянному току. U1 + U2 = 5 В. Последняя величина является переменной и находится из вольт-амперной характеристики. Нужно в рабочей точке разделить напряжение на ток. Характеристика приближённо представляет ветвь параболы.
  • Слишком большой величины резистор провоцирует немалые активные потери. Они прямо пропорциональны величине сопротивления. Чаще несколько светодиодов включается последовательно, потом уже следует резистор. Можем использовать меньший номинал. Сопротивления светодиодов складываются, и вместо U2 подействует уже сумма напряжений. Вероятность короткого замыкания исключена в каждом элементе по отдельности. Отсутствует опасность, что падёт больше напряжения, чем в начале эксплуатации. Если перегорает единственный светодиод, гаснет вся ветка. На лентах это три штуки.

Светодиоды разного цвета

Светодиоды редко замыкает: горение получается на p-n-переходе. Если расположен в толще полупроводника, то смысла нет, так как свечение невидимо, и полезной частью считается периметр. Устройство светодиодов:

  1. Внутри прозрачной колбы, часто состоящей сплошь из пластика либо стекла, расположен мост с разрывом.
  2. Половинки неравноценны. Большая находится примерно по центру «пули» и является катодом. Анод меньше и расположен на периферии.
  3. Над пропастью перекинута тонкая нитка. На кончике, крепящемся к катоду, образуется p-n-переход, просматривающийся со всех направлений. Тонкая жилка не помеха свободному прохождению света.

В силу подобного строения светодиоды плохо держат обратное напряжение. p-n-переход настолько мал, что легко пробивается. Почему нельзя сделать толще? Отсутствует смысл. Плохие условия охлаждения просто не позволяют проходить большому прямому току. Если повысить длины полупроводника, это вызовет повышение активного сопротивления, что закономерно повысит выделение мощности в рабочем состоянии. Диаметр p-n-перехода увеличить нельзя: резко падает КПД. Ну, а нить не должна быть толстой, чтобы не загораживать свет.

Выбирается середина между эффективностью и рациональностью. Если эксплуатировать светодиод при повышенном напряжении, то постепенно он станет тухнуть и сгорит. Расплавится материал p-n-перехода из-за плохих условий охлаждения.

Обратите внимание, по этой причине слой полупроводников и пытаются сделать тоньше. Чтобы светодиод работал дольше, сделайте электроды из платины. Дороговато и нерационально, но и лампочки накала с этого начинали (контакты из драгоценных металлов).

Расчёты светильника

В первую очередь находим источник питания. К примеру, USB разъем либо специальная китайская розетка с преобразователем. На наш взгляд, это устарело и не вызывает интереса. Гораздо эффективнее найти преобразователь на 12 В и поставить его в распределительный электрический щит на DIN-рейку. Вольтаж взят не произвольно.

Мощность

В подобном случае проще набрать нужную мощность. Из опыта скажем, что двухкомнатная квартира стандартной планировки потребляет для нужд освещения 100 Вт. Причём одновременно светильники все не включаются. Реально выйдет максимум 70 Вт. Но и при подобном раскладе невозможно найти преобразователь с 220 В на 5 В постоянного тока. Для 12 В все проще. Можем взять модуль мощностью на 120 Вт за 4000 рублей, уверены, что цена снизится. Дорого, но если вспомнить, что за свет потребуется платить в 10 раз меньше, выгода налицо: уже за первый год эксплуатации модуль окупится, а гарантия дольше.

Патроны, лампы и выгода

Вместо того, чтобы ломать голову, как сделать светодиодный светильник собственноручно, выгодней купить готовые патроны и лампочки. Кстати, Е27 подходят, так как в продаже найдем цоколи на данный типоразмер. В подобном случае за лампочку заплатим 150 рублей и больше. Если брать светодиод на фото, его светимость практически нулевая при розничной цене 5 рублей. Из подобных приборы освещения не собираются. При покупке от 200 штук магазин Chip&Dip сбывает светодиоды BL-L413UWC по 10 рублей за штуку. Прямо скажем, это недорого. При прямом напряжении 2,7 В светодиоды выдают силу света в 10 Кд. Дальше проведём расчёт экономической целесообразности.

Экономическая целесообразность

Плюс, что при замене простых лампочек на светодиодные нет надобности менять электропроводку. А активные потери теперь снизятся пропорционально потреблению, примерно в 10 раз. Простейшим анализом показано, что экономически выгодно самостоятельно сделать светодиодный светильник исключительно, когда отсутствует желание покупать адаптер на 12 В. В подобном случае внутри лампочек есть небольшой преобразующий блок питания. Это увеличивает вероятность выхода из строя, но проще замена. Смысл сделать точечные светодиодные светильники в шансе использовать светодиоды и без ограничивающих резисторов (либо малым номиналом). Но, к примеру, магазин Chip&Dip не даёт возможности поиска по напряжению питания. Светодиодные лампочки отпадают, так как бессмысленно покупать их за цену, как на 220 В, когда уже приобретён адаптер за солидную сумму. Выявлено, что невыгодно брать матрицы по 550 рублей (на разных сайтах), пропадает смысл работ. Берем дешёвые светодиоды и делаем приличный светильник. А теперь посмотрим, как это реализовать.

Инженерный расчёт

Характеризуется погрешностью до 30%. Даже точные формулы не позволяют получать однозначный результат. Сегодня решили испробовать онлайн-калькулятор http://www.dled.ru/sections/ljumeny-v-kandely. Рассматриваемый онлайн-калькулятор просто осуществляет перевод между кд, в которых даются технические характеристики светодиодов, к Лм. Но не объясняется отличие. Значит, это сделаем мы.

  1. Канделы показывают, сколько лучистой энергии излучает источник.
  2. Люмены дают поправку на угол в стерадианах.

Светодиодная лампа ОнЛайт

К примеру, понятно, что лампочка светит преимущественно вниз, её свойства характеризуются в Лм. К примеру, 850 Лм примерно эквивалентны 75 Вт лампочки накала. Пользуясь онлайн-калькулятором, находим, сколько потребуется элементов, чтобы сделать светильник из светодиодной ленты (маркировка включает тип светодиодов, а значит, можем найти и технические характеристики) либо любого иного сырья. Допустим, показанная на фото, лампочка Онлайт имеет ограниченную область. Разумеется, нет шансов измерить точно, но по ощущениям угол половинной мощности (закладывается в калькулятор для расчёта) лежит где-то в районе 120 градусов (при светимости в 820 Лм).

Получилось, что сила света выходит в 260 кд. Это значит, потребуется порядка 25 светодиодов BL-L413UWC, чтобы обеспечить те же характеристики. Причём нужно потратиться на подложку и создание нужной диаграммы направленности. Приходим к выводу: создание в промышленных масштабах светильников собственноручно, невыгодно. По той причине, что светодиоды дорогие. В результате приходим к тому, что выгодно брать лампочки на 220 В с привычным цоколем Е27.

Если требуется сделать светодиодный светильник для аквариума, нет надобности его помещать внутрь. Просто возьмите отрез светодиодной ленты и наклейте обратной стороной (диодами к стеклу) на заднюю стенку. Источник почти не греется, опасность возгорания нулевая. Полагаем, бра сделать самостоятельно теперь под силу читателям.

Читайте также  Стендовые испытания запорной арматуры

Простая светодиодная лампа своими руками

Внимание! Данная конструкция не имеет гальванической развязки от высоковольтной сети переменного тока. Строго соблюдайте технику безопасности. При повторении конструкции Вы всё делаете на свой страх и риск. Автор не несёт никакой ответственности за Ваши действия.

В статье рассмотрена конструкция светодиодной лампы с питанием от сети переменного тока с напряжением до 240 В и частотой 50/60 Гц. Данная лампа мне служит уже более двух лет и я хочу поделится с Вами этой конструкцией. Лампа имеет очень простую схему ограничения тока, что даёт возможность повторения конструкции начинающим радиолюбителям. Она имеет небольшую мощность и может применяться в качестве ночника или для подсветки помещения, где не нужна большая яркость свечения, но важен такой фактор, как низкое энергопотребление и долгий срок службы. Её можно повесить в подъезде или на лестничной площадке и не переживать о выключении или высоком расходе электричества — срок её службы практически ограничен сроком службы применённых светодиодов, так как данная лампа не имеет импульсного преобразователя, которые часто выходят из строя быстрее самих светодиодов, а радиоэлементы здесь подобраны таким образом, что не превышаются номинальные напряжения и рабочие токи как конденсаторов с диодами, так и самих светодиодов даже при максимальном допустимом напряжении и частоты в питающей электросети.

Лампа имеет следующие характеристики:

Напряжение питания: до 240 В
Частота питающей сети: 50/60 Гц
Потребляемая мощность: не более 1,8 Вт
Количество светодиодов: 9 штук
Общее число кристаллов: 27 единиц
Тип преобразования: с гасящим конденсатором

В лампе использованы трёхкристалльные светодиоды тёплого белого свечения типа smd5050:

При протекании номинального тока 20 мА на одном кристалле светодиода падает напряжение порядка 3,3 В. Это основные параметры для расчёта гасящего конденсатора для питания лампы.

Кристаллы всех девяти светодиодов соединены последовательно друг с другом и таким образом через каждый кристалл протекает одинаковый ток. Этим достигается одинаковое свечение и максимальный срок службы светодиодов и следовательно всей лампы. Схема соединения светодиодов показана на рисунке:

После спаивания получается вот такая светодиодная матрица:

Вот так это выглядит с лицевой стороны:

Представляю Вам принципиальную схему данной светодиодной лампы:

В лампе используется двухполупериодный выпрямитель на диодах D1-D4. Резистор R1 ограничивает бросок тока во время включения лампы. Конденсатор C2 является фильтрующим и сглаживает пульсации тока через светодиодную матрицу. Для данного случая его ёмкость в микрофарадах примерно можно рассчитать по формуле:

где I это ток через светодиодную матрицу в миллиамперах и U — падение напряжения на ней в вольтах. Не стоит гнаться за слишком большой ёмкостью этого конденсатора, так как токогасящий конденсатор играет роль ограничителя тока, а подключённая светодиодная матрица является стабилизатором напряжения.

В данном случае можно использовать конденсатор ёмкостью 2,2-4,7 мкФ. Параллельно ему установленный резистор R3 обеспечивает полную разрядку этого конденсатора после выключения питания. Резистор R2 играет ту же роль для токогасящего конденсатора C1. Теперь главный вопрос — как рассчитать ёмкость гасящего конденсатора? В интернете есть много формул и онлайн калькуляторов для этого, но все они занижали результат и давали более низкую ёмкость, что подтвердилось на практике. При использовании формул с различных сайтов и после применения онлайн калькуляторов в большинстве случаев получилась ёмкость 0,22 мкФ. При установке же конденсатора с данной ёмкостью и при замере протекающего через светодиодную матрицу тока был получен результат 12 мА при напряжении сети 240 В и частоты 50 Гц:

Тогда я пошёл более длинным путём и сначала рассчитал необходимое гасящее сопротивление, а затем вывел ёмкость гасящего конденсатора. За исходные данные мы имеем:

  • Напряжение питающей сети: 220 В. Возьмём максимально возможное — 240 В.
  • Частоту сети я взял в 60 Гц. При частоте в 50 Гц через матрицу будет протекать меньший ток и лампа будет светить менее ярче, но, зато будет запас.
  • Напряжение, падающее на светодиодной матрице составит 27*3,3=89,1 В, так как у нас 27 последовательно включённых светодиодных кристаллов и на каждом из них будет падать примерно 3,3 В. Округлим это значение до 90.
  • При максимальной частоте 60 Гц и напряжении в сети 240 В, протекающий через матрицу ток, не должен превышать 20 мА.

В расчётах используются действующие значения токов и напряжений. По закону Ома гасящее сопротивление должно составлять:

где Uc — напряжение в сети (В)

Um — напряжение на светодиодной матрице (В)

Im — ток через матрицу (A).

Так как в качестве гасящего сопротивления мы используем конденсатор, то Xc = R и по известной формуле для ёмкостного сопротивления:

вычисляем необходимую ёмкость конденсатора:

где f — частота питающей сети (Гц)

Xc — необходимое ёмкостное сопротивление (Ом)

Напоминаю, что полученное в данном случае значение ёмкости конденсатора справедливо для частоты питающей сети 60 Гц. Для частоты же 50 Гц по расчётам получается значение 0,42 мкФ. Для проверки справедливости я временно поставил два параллельно соединённых конденсатора по 0,22 мкФ с получившейся суммарной ёмкостью в 0,44 мкФ и при замере протекающего через светодиодную матрицу тока было зафиксировано значение в 21 мА:

Но для меня была важна долговечность и универсальность и по расчёту на частоту 60 Гц с результатом необходимой ёмкости в 0,35 мкФ я взял близкий номинал с ёмкостью в 0,33 мкФ. Вам так же советую брать конденсатор немного меньшей ёмкости, чем расчётная, что бы не превышать допустимый ток используемых светодиодов.

Далее подставив формулу для расчёта сопротивления в формулу для определения ёмкости и сократив всё выражение я вывел универсальную формулу в которую, подставив исходные значения, можно вычислить необходимую ёмкость конденсатора для любого числа светодиодов в лампе и любого питающего напряжения:

Окончательная формула принимает следующий вид:

Где C — ёмкость гасящего конденсатора (мкФ)

Id — допустимый номинальный ток применяемого в лампе светодиода (мА)

f — частота питающей сети (Гц)

Uc — напряжение питающей сети (В)

n — количество используемых светодиодов

Ud — падение напряжения на одном светодиоде (В)

Может быть кому то будет лень производить эти расчёты, но по этой формуле можно определить ёмкость для любой светодиодной лампы с любым числом последовательно соединённых светодиодов любого цвета. Можно например сделать лампу из 16 красных светодиодов подставляя в формулу соответствующее красным светодиодам падение напряжения. Главное придерживаться разумных пределов, не превышать количество светодиодов с общим напряжением на матрице до напряжения питающей сети и не использовать слишком мощные светодиоды. Таким образом можно изготовить лампу с мощностью до 5-7 Вт. В противном случае может понадобиться конденсатор слишком большой ёмкости и могут возникнуть сильные пульсации тока.

Вернёмся к моей лампе и на фотографии ниже показаны радиоэлементы, которые я использовал:

У меня не нашлось конденсатора ёмкостью 0,33 мкФ и я поставил параллельно включённых два конденсатора с ёмкостью 0,22 и 0,1 мкФ. С такой ёмкостью протекающий через матрицу ток, будет немного меньше расчётного. Фильтрующий конденсатор в моём случае на напряжение 250 В, но я настоятельно рекомендую использовать конденсатор на напряжение от 400 В. Хотя падение напряжения на моей светодиодной матрице и не превышает 90 В, но в случае обрыва или перегорания хоты бы одного из светодиодов напряжение на фильтрующем конденсаторе достигнет амплитудного значения, а это более 330 В при действующем напряжении в питающей сети 240 В. (Ua = 1,4U)

В качестве корпуса я использовал часть компактной энергосберегающей люминесцентной лампы вытащив из неё электронную начинку:

Плату я выполнил навесным монтажом и она с лёгкостью поместилась в указанный корпус:

Светодиодную матрицу я приклеил двойным скотчем к круглому куску гетинакса, который привинтил к корпусу двумя винтами с гайками:

Так же я сделал небольшой рефлектор, вырезав его из жестяной банки:

Я провёл реальные измерения при напряжении в питающей сети 240 В и частоте 50 Гц:

Постоянный ток через светодиодную матрицу принял значение 16 мА, что не превышает номинального тока используемых светодиодов:

Так же я разработал печатную плату под радиоэлементы в программе Sprint-Layout. Все детали поместились на площади 30Х30 мм. Вид данной печатной платы Вы можете видеть на рисунках:

Я предоставил эту печатную плату в форматах PDF, Gerber и Sprint-Layout. Вы свободно можете скачать указанные файлы. Хотя на схеме и указаны диоды КД105, но так как в настоящее время они являются редкостью, то печатная плата разведена под диоды 1N4007. Так же можно использовать другие выпрямительные диоды средней мощности на напряжение от 600 В и на ток в 1,5-2 раза больший тока потребления светодиодной матрицы. Дам рекомендацию на счёт сборки этой матрицы. Все светодиоды лицевой стороной я временно приклеил к малярному скотчу и спаял все выводы согласно схеме, после чего готовую матрицу со стороны выводов приклеил на двусторонний скотч и снял бумажный малярный скотч с лицевой стороны. Если у Вас будет возможность, я рекомендую расположить светодиоды на большем расстоянии друг от друга, так как они будут выделять тепло и от близкого расположения могут перегреваться и быстро деградировать.

Лично у меня эта лампа светит по семь часов в день уже третий год и пока не было никаких проблем. К статье прилагаю также таблицу Exsel с формулой для расчёта. В ней просто нужно подставить исходные значения и в результате получите необходимою ёмкость гасящего конденсатора. Всем ярких и долговечных лампочек. Оставляйте отзывы и делитесь статьёй, так как в интернете много неправильных формул и калькуляторов дающих неверный результат. Здесь же всё проверено опытом и подтверждено временем и реальными измерениями.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: